Removal of benzene and toluene from a refinery waste air stream by water sorption and biotrickling filtration

Paolo Viotti, Marco Schiavon, Renato Gavasci, Andrea G Capodaglio

Abstract


The paper presents the results of an analysis of a two-stage pilot plant for the removal of toluene and benzene from the exhaust air of an industrial wastewater treatment plant (WWTP). The two-stage air process combines a water scrubber and a biotrickling filter (BTF) in sequence, and treats air stripped from the liquid phase compartments of the WWTP. During the experimental period, the pilot plant treated an airflow of 600 Nm3h-1. Average concentrations of the waste air stream entering the water scrubber were 10.61 mg Nm-3 benzene and 9.26 mg Nm-3 toluene. The water scrubber obtained medium-high removal efficiencies (averages 51% and 60%, for benzene and toluene, respectively). Subsequent passage through the BTF allowed a further reduction of average concentrations, which decreased to 2.10 mg Nm-3 benzene and to 0.84 mg Nm-3 toluene, thereby allowing overall average removal efficiencies (REs) of 80% and 91% for benzene and toluene, respectively. Results prove the benefits obtained from a combination of different removal technologies: water scrubbers to remove peak concentrations and soluble compounds, and BTFs to remove compounds with lower solubility, due to the biodegradation performed by microorganisms.

Keywords


absorption, air treatment, scrubber, volatile organic compounds.



Revista Ambiente & Água. ISSN:1980-993X DOI:10.4136/1980-993X


Editoração:Apoio:Filiada à ABEC:
IPABHi CAPES CNPq ABEC