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ABSTRACT 

Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest 
and ecotone campinarana, riparian and campina forests, reflecting topography-induced 
variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter 
decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in 
forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was 
investigated in an artificial drainage experiment. Slightly changes in litter decomposition or 
water chemistry were observed as a consequence of artificial drainage. Riparian plots did 
experience higher litter decomposition rates than campina forest. In response to a permanent 
lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil 
carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 
3.7±0.6 µmol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 µmol m-2 s-1 eight and 11 months 
after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 
µmol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and 
nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a 
transition to less diverse campinarana or short-statured campina forest that covers areas with 
strongly-leached sandy soil. 
 
Keywords: Amazon rainforest; Drought experiment; Campina; Soil Nutrients; CO2 Efflux. 
 

Influência da drenagem na química do solo e da água, na 
decomposição da serapilheira e na respiração do solo em floresta de 

solo arenoso na Amazônia central 
 
RESUMO 

A floresta Amazônica central possui um mosaico de floresta tropical de terra firme, 
ecotones de campinarana, florestas ripárias e ecossistema de campina, que reflete a variação 
induzida pela topografia sobre as condições de solo, nutrientes e drenagem. Foram estudadas 
em florestas em solo arenoso as variações espacial e temporal da decomposição da liteira, 
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química do solo e da água do solo, e a respiração do solo, uma vez que a sensibilidade à seca 
estava sendo investigada em solos de vale pobremente drenado com um experimento de 
drenagem controlada. Pequenas mudanças foram observadas na decomposição da liteira e na 
química da água do solo devido à drenagem artificial. A floresta ripária experimentou maior 
taxa de decomposição do que o ecossistema de campina. Em resposta ao permanente 
rebaixamento do nível do lençol freático de 0.1 m para 0.3 m de profundidade, promovido 
pelo experimento de drenagem, o carbono e nitrogênio do solo superficial diminuíram 
substancialmente. A respiração do solo diminuiu de 3.7±0.6 µmol m-2 s-1 antes da drenagem 
para 2.5±0.2 e 0.8±0.1 µmol m-2 s-1 em oito e onze meses depois da drenagem, 
respectivamente. Na parcela de controle, a respiração do solo permaneceu em 3.7±0.6 µmol 
m-2 s-1. Isso sugere que secas frequentes podem afetar o carbono e nitrogênio do solo 
superficial e as taxas de respiração dos ecossistemas ripários, e podem também induzir a 
transição dessas áreas para uma floresta de menor diversidade como a campinarana ou a 
vegetação de campina que cobrem áreas com solos arenosos fortemente lixiviados. 
    
Palavras-chave: Floresta Amazônica; Experimento de drenagem do lençol freático; Campina; 
Nutrientes do solo; Efluxo de CO2. 
 
1. INTRODUCTION 
 

The Amazon region (6.6 million km2) contains more than half of Earth’s remaining 
tropical rain forest (Houghton et al., 1996), which accounts for 30 – 50% of the total global 
primary production (Dixon et al., 1994). Over the past decades about 750,000 km2 of the 
Brazilian Amazon has been deforested (Nobre and Borma, 2009) which, 11.968 km2 y-1 
between 2007 and 2008 (INPE, 2008). The large-scale conversion of rain forest to agricultural 
land may cause changes in local, as well as global water and carbon cycles (Taylor and Lloyd, 
1992). Changes in the hydrological cycle may potentially lead to dangerous positive feedback 
effects in the carbon cycle through tree mortality (drought), changes in CO2 emissions and in 
the forest CO2 sink strength, decreased biomass production and reduced evapotranspiration by 
the remaining forest. Increases in the frequency of forest fires during dry periods may also be 
expected as a consequence of climate change induced droughts (Aragão et al., 2008). These 
effects enhance changes in global climate even further reported by Cox et al., (2000, 2004) a 
strong climate feedback towards reduced vegetation and soil carbon, predicting decreases of 
about 128 Gt C for the period between 1860 and 2100.  

Climate models predict a global temperature rise of 1 to 6oC until the 21st century (IPCC, 
2007). This warming, and the associated enhanced heterotrophic respiration, may force 
changes in Amazon rain forest that could lead to a future climate without analogue in the 
recent past (Maslin et al., 2005).  

Several Global Circulation Models (GCM) simulations have predicted a dieback of rain 
forest in the Amazon Basin (Cox et al., 2004; Huntingford et al., 2008). The GCM showed an 
enhanced of soil carbon emissions, whereas reducing the size of the respiring soil carbon pool 
until the absolute respiration flux as a consequence of global warming. Other GCM 
simulations of deforestation and subsequent savannisation of part of the Amazon region 
indicate enhanced forest fragmentation, with associated edge effects, and an increase in 
temperature and decrease in precipitation (Costa and Foley, 2000; Oyama and Nobre, 2003; 
Cox et al., 2000; Lewis et al., 2011; Li et al., 2006). This scenario is likely to cause further 
mortality and ecosystem decay (Laurance et al., 2002; Hutyra et al., 2005). Recently, Nobre 
and Borma (2009) have identified two thresholds for the stability of the Amazon forest–
climate equilibrium associated with global warming and deforestation, which are perceived as 
the main threats for Amazon forests. Higher risks of forest dieback or savannisation over 
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large portions of the Amazon Basin was foreseen beyond a global warming of 3 - 4oC, or 
when deforestation in the Amazon Basin would exceed 40% of the initial forest area.  

These models studies all treat the rain forest as a homogeneous cover of the dominant, 
well-drained upland terra firme forest, which grows on clayey to loamy soils (Oxisols, 
Ultisols) and covers about 70% of Amazonia (Luizão, 1996). This forest type has close to 
optimal photosynthesis conditions under current climate and soil moisture conditions. In 
central Amazonia, unconsolidated sedimentary layers have been dissected by rivers and 
creeks over time, which lead to formation of a landscape with rather flat plateaus being 
abruptly separated by steep slopes from broad swampy river valleys (Chauvel et al., 1987; 
Waterloo et al., 2006). Different forest types have developed within this landscape in 
response to topography-controlled distribution of soil types (clay content), phreatic levels and 
nutrient availability (Singer and Aguiar, 1986; Walker, 1987; Laurance et al., 1999). As a 
consequence, the Amazonian terra firme forest landscape is actually made up of several 
different forest types, that each may cover substantial areas. These types include seasonally 
inundated varzea or igapó valley forests along the major rivers, campinarana ecotone areas 
and riparian valley forests along the smaller rivers and low-statured campina forests sensu 
Anderson et al. (1975) that occur on strongly leached sandy soils (Prance and Schubart, 
1978). Campinarana and campina forests cover approximately 6% of Amazonia (McClain et 
al., 1997; Luizão et al., 2007). The presence of such a variation of forest types (campinarana 
and campina) in the landscape may reduce the overall sensitivity of its carbon cycle with 
respect to a faster carbon turnover or changes in ecosystem evapotranspiration and 
groundwater recharge (Richey et al., 2002) from all different Amazonian forests. 

Drought experiments in Amazonia have been exclusively conducted in the plateau terra 
firme forests. The drought studies by Meir et al., (2008), Nepstad et al., (2002) and Davidson 
et al., (2008), suggesting that tall terra firme forest on well-drained soils are not very 
vulnerable to reductions in rainfall over periods of less than three years, but do respond to 
longer periods of drought (Lewis et al., 2011), which cause increases in tree mortality and up 
to 60% reduction in above-ground net primary productivity (Nepstad et al., 2007; Brando et 
al., 2008). Meir et al., (2008, 2009) also reported 20-30% reduction in the leaf area index, 30-
40% in transpiration rates and a 20% reduction in soil CO2 emissions. .  

Whilst the well-drained Oxisols and Ultisols on slopes and plateaus have a significant 
clay fraction, the poorly-drained valley soils consist of predominantly of pure quartz sand 
(Spodosols) and have little capacity to retain water or nutrients (Singer and Aguiar, 1986; 
Chauvel et al., 1987). Riparian and ecotone campinarana forests grow on these poor sandy 
soils and experience almost permanently saturated soil conditions, which are maintained by a 
continuous flow of groundwater from slope and plateau areas, where higher groundwater 
levels are maintained by recharge during wet periods (Hodnett et al., 1997; Tomasella et al., 
2008).  

Malhi and Phillips (2004) have reported that tropical forests are dynamic ecosystems of 
constantly shifting composition and structure.  As the riparian forest, and to a somewhat 
lesser extend the ecotone campinarana forest, is adapted to near-permanent saturated soil 
conditions, a frequent or permanent lowering of the groundwater level due to changes in 
upland groundwater recharge may induce changes in the valley soil and forest composition 
and functioning. Indeed, Walker (1987) already perceived desertification of Spodosol areas in 
the Amazon as a real threat if climate should get drier. 

In central Amazonia, short-statured campina (heath) forests grow on strongly-leached 
sandy soils, with a texture similar to the valley soils, but with lower phreatic levels. The main 
characteristics that distinguish the campina forest type from other forest types are its low 
species richness and dominance of a single or very few tree species, its unusual physiognomy 
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- shorter stature, multi–branched and tortuous trees and the presence of bushes with 
scleromorphic leaves (Anderson et al., 1975; Anderson, 1981; Richards, 1996). 

Cowling et al. (2004) suggest that the predominant mechanisms for maintenance of forest 
in cool periods are the reduced evapotranspiration and lowered respiration costs and that, 
conversely, tropical rain forests may now be near an upper temperature threshold where these 
physiological mechanisms become positive feedbacks that could induce forest dieback. 
Changes in the frequency of valley soil saturation conditions may induce changes in soil 
carbon and nutrient retention capacities, partly because of the poor soil nutrient retention 
capacity (Chauvel et al., 1987). This could potentially lead to local shifts in the composition 
of riparian forest towards adjacent lowland ecotone campinarana forest or to campina forest 
e.g. savannization; (Cox et al., 2000; Oyama and Nobre, 2003) with its particular carbon 
cycling. If valley forest evapotranspiration is reduced due to such a shift in forest composition 
towards campina forest, this may lead to a further increase in air temperature. This is in line 
with reports that the tropical rain forest will increase its relative tolerance due to the 
temperature rise and that it is inevitable that tropical forest composition will change in 
response to atmospheric change, as particular species are favoured by higher CO2 
concentrations and changing climate conditions (Malhi and Phillips, 2004). 

CO2 gas in the soil, which eventually evades as soil respiration, can be generated by 
various processes. These include biotic processes, such as respiration of roots, microbes or 
macro-fauna in the soil. Such biotic processes are affected by temperature, as well as by 
moisture content. Under very dry soil conditions the ecosystem is known to have lower 
respiration rates (Sotta et al., 2004; Davidson et al., 2008). This mechanism was explained by 
Linn and Doran (1984), who observed that under very dry soil conditions the substrate 
diffusion through water films around soil particles to microbial active cells becomes limited. 
Soil CO2 can also be generated through chemical processes, such as oxidation of soil organic 
matter, which may lead to either fast or slow carbon loss, depending on aeration status, soil 
pH and the presence of chemical components to interact with soil organic matter (and litter). 

For a better understanding of the implications of climate change on the rain forest carbon 
cycle in central Amazonia, we need to study changes in soil carbon (Phillips et al., 2009), 
nutrients and heterotrophic respiration in response to lowered groundwater levels in the sandy 
riparian zone, which is likely to be most affected by reduced rainfall. The results presented 
here describe observed variations in soil respiration, groundwater levels, soil nutrients and 
litter decomposition in adjacent riparian forest, campinarana forests and in a separate 
campina forest. In addition, we report on a study of the drought response of soil in a saturated 
valley area where the phreatic level was artificially lowered using drainage tubes. This study 
allows assessment of the rate and magnitude of changes that may typically occur during 
extended periods of drought in sandy valley soils in central Amazonia and may provide clues 
on potential changes in the vegetation that is adapted to high phreatic levels as maintained by 
continuous groundwater flow from the plateaus and slopes. 
 
2. MATERIAL AND METHODS 
 
2.1. Site description 

Three measurement sites were established in the Reserva do Cuieiras - ZF2 (2o 36’ S, 
60o 12’ W), which includes the Igarapé Asu catchment (Waterloo et al., 2006). The Reserve 
belongs to the Instituto Nacional de Pesquisa da Amazonia (INPA) and is about 70 km north 
of Manaus along the Manaus - Boa Vista highway. The Reserva do Cuieiras study site has 
extensively been described by Araújo et al., (2002, 2010). The topography is typical for 
central Amazonia consisting of rather flat plateaus (90-105 m a.s.l.) incised by broad swampy 
valleys (45-55 m a.s.l.) with moderately steep slopes (15°-30o; Waterloo et al., 2006). The 
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soils on slopes and plateaus are Oxisols and Ultisols with a significant clay fraction and cover 
57% of the area (Chauvel et al., 1987; Rennó et al., 2008). The valley soils cover the 
remaining 43% of the area and consist of strongly leached quartz sands (Spodosols) with a 
low capacity to retain water or nutrients (Chauvel et al., 1987; Brinkmann, 1985; Waterloo et 
al., 2006). The dominant forest type on the well-drained, clayey soils on slopes and plateaus is 
tall terra firme rain forest with tree heights varying between 25 m and 45 m (Oliveira et al., 
2008; Rennó et al., 2008). The poorly-drained broad valleys are covered by campinarana and 
riparian forests, which are characterised by tree heights of up to 25 m and have a higher 
abundance of palms. Phreatic levels within the research area ranged from well over 30 m 
below the soil surface on the plateau to less than 0.1 m depth in the riparian forest (Tomasella 
et al., 2008). 

The drainage experiment was conducted in riparian forest using drainage and control 
plots established 50 m apart along the Igarapé Asu river in the swampy valley bottom (Figure 
1), where the phreatic level is usually at less than 0.1 m below the soil surface (Tomasella et 
al., 2008). Both plots had similar soil, vegetation composition, hydrologic and micro-climatic 
conditions. Ecotone campinarana forest grows on sandy soils in the zone between the riparian 
forest and the tall terra firme forest in central Amazonian catchments (Costa et al., 2005; 
Drucker et al., 2008). This forest type shares many plant species with riparian forest and 
covers an area of about 750,000 km2 in the Amazon (Hutyra et al., 2005). A campinarana 
forest plot was established close to the riparian plots, about 300 m away from the Igarapé Asu 
stream. This site had a lower phreatic level at an average of 0.8 m below the surface (Figure 
2).  

A fourth plot, representing short-statured campina forest growing on well-drained, 
strongly-leached white sands at a higher topographic position in the landscape, was 
established in INPA’s Reserva de Campina (2o 59’ S, 60o 03’ W) located along the BR-174 
highway 45 km north of Manaus, Amazonas State, Brazil. The size of the reserve is 
approximately 9 km2 and the vegetation consists predominantly of lowland evergreen rain 
forest, but also includes patches of stunted heath forest (campina, 0.03 km2) and taller heath 
forest (campinarana, 0.04 km2). The campina forest at this site is characterised by small 
patches of trees and shrubs that are surrounded by areas of bare soil i.e. sun campina sensu 
(Anderson et al., 1975). Tree heights range between 4 m and 7 m and between 10 m and 18 m 
for campina and campinarana i.e. shade campina sensu (Anderson et al., 1975) forests, 
respectively (Luizão, 1996; Luizão et al., 2007). The phreatic level is deeper than at the other 
sites at about 3 m below the surface and the coarse grained soil is conducive to excessive 
drainage and is poor in nutrients (Prance and Schubart, 1978). 

The climate in central Amazonia does not vary much, the annual average temperature is 
26.7oC and relative humidity is about 80%. Annual rainfall, measured at the Ducke rain forest 
reserve near Manaus (1966-1992), amounts to 2442 mm, with a standard deviation of 306 
mm. The rather weak dry season is between June and November (Hodnett et al., 1997; Araújo 
et al., 2002; Waterloo et al., 2006).  
 
2.2. Measurements 

Drought experiments in other parts of central Amazonia used throughfall exclusion to 
simulate drought e.g. (ESECAFLOR - Meir and Grace, 2005; Nepstad et al., 2002). 
Throughfall exclusion could not be used to simulate drought in valleys because of the 
constant supply of groundwater from the plateaus. Hence, we designed a method to simulate 
drought by artificially lowering the phreatic level without excluding rainfall. To achieve such 
lowering of the phreatic level, we installed two agricultural drainage tubes in parallel with 15 
m spacing (Figure 1). Installation of these tubes started on March 1st and finished on March 
10, 2007. Each tube had a length of 30 m and 0.2 m diameter and was installed ~1 m below 
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the soil surface. To avoid having to cut through large roots, the tubes were positioned at least 
4 meters away from large trees. Backfilling of the trenches was done in such a way to 
preserve the original soil profile as much as possible. 

Soil respiration was measured at all plots with a single automated soil CO2 flux system 
(LI-8100, LI-COR, Nebraska, USA) with a 0.2 m diameter chamber. The system was set up to 
measure soil CO2 flux, as well as soil moisture content and soil temperature (both measured at 
5 cm depth) at 30-minute intervals. The instrument was consecutively used in the various 
plots. In each plot, measurements were made over periods of four to seven consecutive days 
at three locations in the plot before it was moved to the next plot. In this way information on 
both spatial and temporal variations could be obtained for each plot and average values 
reported for each plot therefore include both variations in time and space.  

 

  
Figure 1. Location of research sites and trench installation: a) South 
America View from Google maps with arrow pointing to the ZF2 
experimental site in central Amazonia, b) riparian zone (SRTM image) 
with broad swampy valleys and moderately steep slopes in the Cuieiras 
Reserve where the drainage experiment was done, c) is the drainage tube 
installation in trench at 1 m depth in the riparian forest plot and d) is the 
short-statured campina reserve forest. 

 
Decomposition of leaf litter was measured according to the litter bag method of Bocock 

et al. (1957). We used sixty litter bags with 1 mm mesh size and larger lateral holes to allow 
entrance of larger insects. Each bag contained 5.75 g of dried (at 70°C) fresh leaf material 
collected from trees in the same plots. The experiment started at all sites on 6 December 
2006, when the bags were installed on the ground surface and spread out in 12 blocks of 5 
bags each. Five bags were retrieved randomly at each site every month to determine dry 
weight loss. A double exponential model, used earlier by Luizão and Schubart (1987) and 
based on that of Carpenter (1982), was used to estimate times of 50% and 95% initial mass 
loss rates, based on measured mass loss rates over the period of a year. 

Two piezometers were installed 2 m apart in the drained plot with their screens at 0.75-
1.25 m below the surface. The piezometers were installed parallel to the drainage tubes at a 
distance of 4 m from the tubes using hand-operated bailer boring equipment (Eijkelkamp 
Agrisearch Equipment, The Netherlands) on March 7, 2007. A single piezometer was 
installed in the control plot, with its screen at a depth of 1.62-2.12 m below the surface on 
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March 16, 2007, about 50 m away from those in the drained plot. The fourth piezometer was 
installed in the campinarana forest at this site on the March 8, 2007.  

A fifth piezometer was installed in the campina forest plot on January 26, 2007, with its 
screen at 3.62-4.12 m below the surface, reflecting the much lower phreatic level in this plot. 
The screen depths were such to remain below minimum dry season phreatic levels.  
Groundwater levels were measured weekly with an acoustic sounding device (Eijkelkamp 
Agrisearch Equipment, The Netherlands). In addition, groundwater samples were collected at 
monthly intervals from all piezometers, after flushing at least three times the tube volume 
using an electric pump to sample fresh groundwater. 

Three sets of six vacuum-type ceramic cup soil water samplers were installed at depths 
of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 m in the drained, control, campinarana and campina forest 
plots to obtain samples from soil moisture and shallow groundwater. Before installation, all 
cup samplers were rinsed with a diluted HNO3 solution (pH=1) to remove any sorbed ions 
and flushed with distilled water until the EC of water used for flushing fell below 2 μS cm-1. 
Samples from the three sets of cup samplers in each plot were bulked, yielding single samples 
for each depth after each sampling event. 

Water samples were analysed for Dissolved Organic Carbon (DOC), Dissolved Inorganic 
Carbon (DIC) and inorganic ions. DOC/DIC samples were filtered in situ with pre-ashed 
glass fiber filter (0.7 μm Whatman GFF, USA) and then stored in a 25 ml glass bottle with a 
Teflon lid to prevent contamination. HgCl2 (at 300 μM) was added for preservation of the 
sample. DOC and DIC concentrations were analysed shortly after sampling on a TOC 
analyser (TOC5000A; Shimadzu, Japan) in the laboratory at INPA. Separate samples were 
collected for analyses of major cations (Na+, K+, Mg2+, Ca2+, NH4

+) and anions (Cl-, SO4
2-, 

PO4
3-, NO3-, NO2-). These samples were filtered using disposable cellulose-acetate filters 

(0.47 μm, Whatman GFF, USA) and stored in high-density 100 ml polyethylene bottles. 
Sample preservation was achieved by adding few drops of a 100 mg L-1 Thymol solution and 
then analysed on a Dionex ion chromatograph (DX500, USA).  

Soil samples were collected with a hand auger set (Eijkelkamp Agrisearch Equipment, 
The Netherlands) at three locations within each plot to account for spatial variation. These 
samples were then bulked according to depth (0-0.5, 0.5-0.10, 0.20-0.30, 0.30-0.40 and 0.60-
0.70 m) to limit the number of samples to be analysed. Sampling occurred both in control and 
drained plots just before installation of the drainage tubes (February 7, 2007) and sixteen 
months after the installation of the drainage tubes (July 18, 2008). Soil samples were 
collected in a similar fashion in the campina plot. All samples were stored in plastic bags for 
subsequent drying and analyses in the laboratory. 

Soil sample analyses were done at the Laboratório Temático de Solos e Plantas – LTSP 
of INPA according to the methods described by Silva (1999). Analyses of %C and %N were 
done on finely ground soil sample triplicates using an Elemental Analyser (NA 1500 W 
Series 2, Fisons Instruments, UK). Extraction of exchangeable P, K, Fe, Mn and Zn was done 
according to the Mehlich I procedure, whereas exchangeable Ca and Mg were extracted in a 
1N KCl solution as described in Silva (1999). Potential acidity (exchangeable Al+H) was 
measured in a 0.5N Ca-acetate solution at a pH of 7. The obtained solutions were analysed 
with an atomic absorption spectrometer (1100B, PerkinElmer, USA). Soil pH and pHKCl were 
measured in 1:2.5 soil-water and 1:2.5 soil 1N KCl solutions after equilibrating for 1 h and 
repeated shaking (Silva, 1999). The pH was measured with a laboratory pH meter 
(mPA210/mPA-210P, Tecnopon, Brazil) calibrated with pH buffers of 4.00 and 7.00. 
Electrical conductivity (EC) was measured with a WTW conductivity meter (315i EC-meter, 
USA), calibrated against a 1460 μS cm-1 0.01M KCl solution. 

At the ZF2 site, 30-minute precipitation totals were measured at 51 m above ground level 
on top of a micro-meteorological tower with a tipping bucket rain gauge (EM ARG-100, UK; 
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0.2 mm resolution) connected to a CR10X datalogger (Campbell Scientific, USA). Rainfall 
was measured with a similar system, but at about 3 m above the canopy in the campina forest.  
 
3. RESULTS AND DISCUSSION 
 
3.1. Soil drainage status 

Time series of groundwater levels in the riparian forest drainage and control plots, the 
campinarana plot and in the campina forest plot are shown in Figure 2. Visual inspection of 
the drainage and control plots before the start of the experiment showed that the soil was 
completely saturated and water was on the surface at both plots. Groundwater level 
measurements in the control plot started only two months after installation of the drainage 
tubes and the phreatic level remained close to the surface at all times. The mean water level 
depth was 0.12±0.06 m (n=36). Two days after the installation of the tubes (10 March 2007) 
the phreatic level in the drained plot had already decreased to 0.21 m and the phreatic level 
remained afterwards below that of the control plot, varying between depths of 0.24 m and 
0.45 m below the surface, with a mean depth of 0.35±0.04 m (n=36).  

 

 
Figure 2. a) Changes in phreatic levels at the four 
research plots as observed from weekly measurements; 
b) hourly rainfall in the Igarapé Asu catchment (ZF2). 

 
The installation of the drainage tubes therefore effectively lowered the phreatic level 

permanently by 0.23 m in the drained plot as compared to that in the control plot. Seasonality 
in the phreatic level is virtually absent in the riparian forest that is fed by a constant supply of 
deep groundwater originating from the plateau (Hodnett et al., 1997; Tomasella et al., 2008). 
However, due to the sandy, permeable nature of the soil, sudden drops can occur during dry 
periods, such as in October-November 2007 when the phreatic level in the control plot fell to 
a depth of 0.31 m below the surface in response to dropping groundwater levels on the 
plateau. However, these dry periods generally do not last longer than a few weeks under the 
current climate regime in central Amazonia. The phreatic level in the drainage plot seems to 
exhibit less variation than that in the control plot, but also did show a response to drought in 
periods of low rainfall (October-November, 2007). 
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The campinarana plot, located between the plateau/slope and riparian area, experienced 
lower phreatic levels ranging between depths of 0.39 m and 1.30 m below the surface, with a 
mean depth of 0.81±0.21 m (n=32).  Different combinations of soil texture, drainage status 
and nutrient availability impact on the forest cover in central Amazonia, with tall terra firme 
rainforest on clayey soil and short statured campina forest on white sands occupying both 
ends of the spectrum in non-flooded areas with respect to the cycling of carbon, mineral 
nutrients and species composition (Guillaumet, 1987; Walker, 1987; Luizão et al., 2004). Our 
studies in riparian, ecotone campinarana and campina forests that grow on sandy soils with 
little capacity to retain nutrients and under varying drainage conditions, indicate that there are 
clear differences in litter decomposition, soil and water chemistry and soil CO2 respiration. 

The phreatic level in the campina forest was lowest, with depths ranging between 2.3 m 
and 3.8 m below the surface and with a mean depth of 2.99±0.42 m (n=39, Figure 2). Phreatic 
levels in the campinarana and campina plots were therefore much lower than those 
experienced by the riparian forest and also showed a much more pronounced seasonal 
variation, especially in the campina forest plot (Figure 2). The well-drained campina forest is 
an infiltration zone due to its high position in the landscape (Prance and Schubart, 1978), 
whereas the campinarana and riparian forests receive groundwater from upland areas 
(exfiltration zones) and therefore experience much higher phreatic levels (Hodnett et al., 
1997; Waterloo et al., 2006; Tomasella et al., 2008). A slight to moderate reduction in rainfall 
presumably would not reduce evapotranspiration by the tall terra firme forest on the higher 
parts in the landscape, but may reduce groundwater recharge in these upland areas 
significantly causing a lowering of the phreatic level below the plateaus. This in turn would 
limit the flow of groundwater to the valley, reducing stream discharge and causing a higher 
temporal variation in the phreatic levels in the valley. 
 
3.2. Litter decomposition rates 

Litter decomposition rates observed in the riparian forest plots indicated a rapid initial 
loss of leaf mass in the first month (up to 25% of the initial mass loss for individual samples), 
followed by a more gradual decline to about 73% mass loss a year after installation (Figure 
3). The decomposition rate was much lower in the campina forest, where only 35% of litter 
mass was lost in the first year. About 50% of weight loss occurred after 210 days in both 
control and drainage plots, whereas in the campina forest the 50% mass loss occurred only 
after 480 days. The data indicated that 95% mass loss would occur after 925 days in the 
control plot, 955 days in the drainage plot and only after 1825 days in the campina forest plot 
(Figure 3), it was similar to those observed by Luizão and Schubart (1987), who obtained 
corresponding estimates of 218 days (50% of weight loss) and 1006 days (95% of weight 
loss), for dry season conditions based on a 150-day measurement period.  

Luizão and Schubert (1987) observed that litter decomposition was faster on the plateau 
than in the valley of this terra firme landscape and that decomposition rates were higher 
during the wet season (50% mass loss in 32 days) than during the dry season. The latter 
observation is not supported by our measurements that started early in the wet season and 
continued throughout the dry season. According to Luizão et al. (2004), litter turnover rates 
on plateau and slope were not significantly different from those in the valley in spite of lower 
N concentrations in the upper soil layer in the valley, which they attributed to other processes, 
such as leaching, removing litter from the soil surface.   

A permanent decrease in phreatic levels or a change in the frequency and lengths of 
droughts may impact the local decomposer community, and thereby decomposition rates of 
leaf litter. However, no significant differences were found between decomposition rates in the 
drained plot, where the phreatic level was artificially lowered by about 0.3 m, and the control 
plot (Figure 3). This may have several causes. First, the decomposition experiment started 
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four months before drainage tubes were installed and about 40% of the initial litter mass had 
therefore already been lost before the phreatic level was lowered. Furthermore, the size of the 
drained plot may have been too small (edge effects – micro-climate and vegetation) and the 
period of study after drainage started (1 year) too short for adaptation of the decomposer 
community to the new drainage conditions in the plot. 

 

 
Figure 3. Remaining mass fraction of organic material in 
litterbags installed in riparian forest drainage and control 
plots (ZF2) and in the campina forest plot.  

 
There may be several reasons for the slow decomposition observed in campina forest. 

Tree species in campina forest do have sclerophyllous leaves that may be more difficult to 
decompose and studies have shown that the decomposition activity of fungi is also suppressed 
in this environment, where ectomycorrhizae are instrumental in the cycling of nutrients 
(Singer and Aguiar, 1986). Walker (1987), Luizão and Schubart (1987) and (Luizão, 1996) 
have reported that even the high annual rainfall, which percolates rapidly through the 
nutrient-poor sandy soils, may not be sufficient to transport sufficient nutrients for the 
synthesis of adequate quantities of structural proteins (endoplasmatic reticulum, membranes, 
histones, etc.) in order to balance intense assimilation. This could be a cause for a relative 
excess of cellulose and lignin in the leaves. The first step in litter decomposition is leaching, 
when nutrients and organic compounds dissolve in water and move into the soil. Compounds 
that are easily leached from litter include potassium, sugars and amino acids. Subsequent leaf 
litter weight loss is related to termite activity in terra firme rainforest (Luizão and Schubart, 
1987), which can also degrade such resistant substances as lignin (Butler and Buckerfield, 
1979). When litter gets increasingly fragmented over time, it reveals new surfaces for bacteria 
and fungi to attack (Chapin III et al., 2002). The presence and activity of termites may be low 
in nutrient-poor campina forest as compared to those in other rain forest types, which may 
slow down litter fragmentation and decomposition in campina forest, causing low carbon 
levels in the soil and high DOC concentrations in soil moisture and groundwater, as was 
observed in this and other studies in central Amazon (McClain and Richey, 1996; McClain et 
al., 1997). Litter fragment decomposition contributes significantly to CO2 production in the 
soil, accounting for about 27% of soil emission (Wang et al., 1999), which is low at this site. 
Su (2005) reported that litter decomposition rates decrease over time due to labile compounds 
leaving the litter being attacked quickly. This process leaves a residue of less readily 
decomposable substances (Su, 2005), with potentially high C:N ratios (McClain et al., 1997). 
High nitrogen content in litter is considered a factor affecting the speed of decomposition by 
micro-organisms. Pate and Layzell (1990) shows that cellulose degradation is also a nitrogen-
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limited process and will increase with the nitrogen content of litter. Vitousek and Sanford 
(1986) compared foliar and fine litterfall nutrients of various rainforests and showed that nitrogen 
and phosphorus appear to cycle less in campina forest than in other lowland forests. 
 
3.3. Groundwater and soil chemistry 

Average of chemical analyses of the groundwater obtained from piezometers in control 
and drainage plots are given in Table 1, whereas time series of pH and DOC concentrations in 
groundwater for all plots are shown also in Figure 4. DOC levels were consistently highest in 
groundwater below the campina forest, at 20-25 mg L-1, and lowest in the campinarana plot, 
varying seasonally between 2 and 15 mg L-1. The pH was invariably low at piezometer 
measurements in situ, ranging between 3.5 and 4.7, with a single minimum of 3.21 being 
observed in the drainage plot at the start of the drainage experiment in both piezometers. In 
both drainage and control plots the EC was positively correlated with the DOC concentration 
being R2=0.90 and 0.84, respectively, whereas the pH correlated negatively with DOC 
concentration R2=0.26 and 0.60, respectively (Figure 4). Concentrations of K+ and NO3

- 
remained invariably low.  
 

Table 1. Average of chemical analysis of groundwater in the drainage and control plots. 

Control - piezometer, 1.62-2.12 m depth Drainage - piezometer, 0.75-1.25 m depth 

Period pH DOC 
(mg.L-1) 

DIC 
(mg.L-1) 

NO3
-1 

(mg.L-1) 
K 

(mg.L-1) 
EC 

(µS.cm-1) 
pH DOC 

(mg.L-1) 
DIC 

(mg.L-1) 
NO3

-1 
(mg.L-1) 

K 
(mg.L-1) 

EC 
(µS.cm-1) 

02/23/2007 3.63 - - - 0.00 24.2 4.27 3.90 2.25 0.01 0.03 17.0 
After drainage installation (Mar/1/2007)         

04/21/2007 - - - - - - - 19.87 0.76 0.01 0.35 - 
06/01/2007 - - - - - - 4.21 14.97 4.32 0.01 0.34 25.1 
08/01/2007 - - - - - - 4.46 13.54 3.68 0.06 0.22 21.0 
09/14/2007 - - - - - - 4.35 13.64 0.75 0.05 0.40 23.2 
10/19/2007 4.29 16.38 8.96 - 0.23 32.9 4.70 4.63 9.17 0.08 0.61 13.5 
11/16/2007 4.30 10.14 3.77 0.03 0.26 18.4 4.60 2.26 3.86 0.06 0.41 13.7 
12/13/2007 4.00 16.85 7.56 0.03 0.20 29.2 4.30 2.85 8.44 0.04 0.3 13.5 
01/15/2008 3.95 23.03 7.71 0.02 0.21 35.8 4.16 13.43 5.38 0.13 0.25 22.4 
02/21/2008 4.05 22.56 6.73 - 0.09 35.5 4.16 14.4 4.24 0.04 0.2 25.2 
08/02/2008 4.06 18.40 6.42 0.01 0.97 34.0 4.58 8.79 6.07 0.17 0.46 21.0 

 
The temporal variation in DOC levels observed in the campina plot is slighter than those 

in the control, drainage and campinarana plots. The fluctuations in the DOC concentrations 
of valley groundwater are presumably caused by seasonal variations in the rate of upwelling 
of deeper (plateau) groundwater, in which DOC concentrations are invariably low (<5 mg L-1) 
according to Waterloo et al. (2006). Groundwater in the control plot had the highest DOC 
concentrations, whereas below the drainage and campinarana plots were consistently lower 
by about 7 mg L-1. The EC in groundwater varied between 13 and 36 μS cm-1 in the control 
and drainage plots. These differences could not be attributed to the impact of drainage as the 
initial pH and EC measurements suggest that DOC concentrations were already higher in the 
control plot than in the drainage plot at the start of the drainage experiment (Figure 4).   
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Figure 4. Temporal variation of in pH (a) and DOC (b) 
concentrations in groundwater (wells samples) in all four 
research plots. The dual arrow indicates the start period of 
drainage experiment. 

 
The present Drainage study was observed no significant response on groundwater and 

soil chemistry conditions, excepting of marked changes in C and N contents of the top 5 cm 
of the soil in the drainage plot as compared to those in the control plot. The soil acidity, 
defined as H+Al, is high in the riparian and campina forests. The low pH values observed in 
soil moisture in the drainage and control plots did not seem to be associated with 
corresponding increases in DOC concentrations and must therefore be caused by different soil 
processes, such as the removal of H+ ions from exchange sites by other cations. Luizão et al. 
(2007) did observe that H+ was the dominant ion, rather than Al3+, on the exchange 
complexes in campina forest and suggested that H+ ion toxicity is a major growth-limiting 
factor for non-adapted plants in heath forest soils in central Amazonia. Our study indicates 
that the riparian forest soils may have this low Al (and Fe) sesquioxides content in common 
with the campina soils, which could have implications for the forest succession in a drier 
climate. The yellowish/orange colour of the sand below campinarana forest suggests that 
these soils do have a higher Al (and Fe) sesquioxides content. 

The shallow groundwater, sampled with the ceramic cup samplers, showed less seasonal 
variation in DOC concentrations and pH than that observed in the deeper piezometer samples 
(Figure 5). Water extracted from the 0-10 cm soil depth in the drained plot had a comparable 
DOC concentration as those measured deeper in the soil in the control plot. However, in the 
drained plot DOC concentrations decreased in the subsoil (below 10 cm) and were 
consistently lower than those measured at the same depths in the control plot (see Figure 5). 
Topsoil DOC concentrations also seem to respond to heavy rainfall in both plots. As this was 
the case from the start of the experiment onwards, it cannot be attributed to the artificial 
drainage. 
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Figure 5. Temporal variation in pH and DOC concentrations from cup 
sampler (shallow) and piezometer (deep) groundwater in drainage (a and c) 
and control (b and d) plots. 

 
The forest plots in exfiltration zones showed higher groundwater levels, higher soil 

nutrient contents and soil respiration rates, and faster litter decomposition rates. In spite of 
this, DOC levels in the shallow groundwater and stream water at these sites are also high and 
may reach levels locally that are similar to those presently observed in the campina forest 
groundwater. This suggests that the litter decomposition process that provides DOC in the 
valley is different from that acting in terra firme forests on slopes and plateaus in the central 
Amazonian landscape, where DOC levels in groundwater remain low (Waterloo et al., 2006). 
Luizão et al. (2004) and Marques, (2009) showed that soil C and N contents were 
significantly higher in the clayey topsoil (0-10 cm) on plateau and slope, than in the sandy 
valley, which they attributed to higher biological activity and higher intensity of 
mineralization processes at the former sites. Ion concentrations are invariably low in soil 
moisture and groundwater, as is the pH which varies between 3 and 5.  

In spite of the lower DOC concentrations in soil moisture in the drainage plot for most of 
depths (Figure 5), the pH was comparable to that in the control plot, but showed a somewhat 
lower seasonal variation never reaching the extremely low values observed in the control plot 
(pH of about 2.8 in June 2007, Figure 5).  

A comparison of the DOC concentrations measured at all sites is given in Figure 6. We 
have tested (F-test) differences between samples collected at all sites. The DOC 
concentrations were lowest in the riparian forest plots, whereas the highest values were 
observed in the campinarana forest. However, there was a significant difference between the 
DOC concentrations in soil moisture at 0.3 m depth in control and drainage plots (n=16, 
F=13, p=0.00002). The DOC concentration at the surface 0-10 cm layer in the drainage plot 
was similar to that measured at 0.3 m in the control plot. DOC concentrations in the control 
(at 0.3 m depth; n=15, F=4.27, p=0.05) and drainage (at 0.2-0.3 m depth; n=25, F=3.8, 
p=0.04) plots were significantly different from those (10 – 40cm) in the campinarana plot. 
DOC concentrations in the campinarana plot showed a large variation and resembled those 
measured in the campina plot more than those in the riparian forest plots. It should be noted 
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that the campina forest soil was often too dry for soil moisture extraction with the ceramic 
cup samplers and samples could therefore only be collected shortly after high rainfall events. 
It is because sandy soil in those dry areas needs heavy rain events to fill in the micro/macro 
soil pores, because the Hydraulic conductivity is bigger than other soils.  

  

 
Figure 6. Variation in DOC concentrations in shallow 
groundwater sampled with the ceramic cup samples at depths 
between 10 to 30 cm below the soil surface in control (C), 
drainage (DR), campinarana (CPNR) and campina (CP) 
plots. 

 
Table 2 shows the chemical properties of the soils in the drainage, control and campina 

plots. The soil samples collected in the control and drainage plots at the start of the study 
were inadvertently lost and the results shown in Table 2 are for soil samples collected in July 
2008, at the end of the drainage experiment. All samples have low exchangeable cation 
concentrations, consistent with the sandy substrate and high leaching environment of these 
valley rain forests, and showed a decline with depth. The poor retention capacity of the valley 
soil can be due to the virtual absence of clay minerals (<2%) and the low organic matter 
content (Table 2). As expected %C, %N and exchangeable cation concentrations in control 
and drainage plots are rather similar. The C:N ratios remained fairly constant with depth 
down to 0.7 m, averaging to 24±2 over the profile in the drained plot and to 28±3 in the 
control plot. The exception is the top 0-5 cm soil layer in the drainage plot, which had 
extremely low %C (0.07%) and %N (0.00%) contents as compared to those observed in the 
same layer in the control plot (1.38% C and 0.05% N, Table 2). The change in carbon and 
nitrogen contents were in line with visual observations of a change in top soil colour in 
drainage plot (from dark grey to white) during the study, whereas no change in soil colour 
was observed in the control plot. Carbon and nitrogen difference in the first 0.05 m comparing 
drainage to the control plot after 16 months of treatment was about 10020 kg C ha and 365 kg 
N ha, respectively, with a measured bulk density of the top soil of 1400 kg m-3. The analyses 
suggest that drainage did cause a marked decrease in the organic matter content of the top 5 
cm of the soil, but not in deeper layers. Exchangeable macro-nutrient cations (Ca, Mg, P and 
K) remained at similar levels in drainage and control plots throughout the soil profiles (Table 
2). The dominant ions on the exchange complexes were, in descending order, Al+H > K > Ca 
> Mg > Fe > P. 

 



ZANCHI, F. B.; WATERLOO, M. J.; DOLMAN, A. J.; GROENENDIJK, M.; KESSELMEIER, J.; KRUIJT, 
B.; BOLSON, M. A.; LUIZÃO, F. J.; MANZI, A. O. Influence of drainage status on soil and water chemistry, 
litter decomposition and soil respiration in central Amazonian forests on sandy soils. Ambi-Agua, Taubaté, v. 6, 
n. 1, p. 6-29, 2011. (doi:10.4136/ambi-agua.170) 
 

 20

Table 2. Soil nitrogen, carbon, exchangeable cations and pH at the different research sites sampled in 
February 2007 (CP plot) and July 2008 (DR, C plots).  

N C Ca Mg Al + H K P Fe Zn Mn pHKCL pHH2O 

samples % % mg kg -1 mg 
kg -1 

cmolc 
kg -1 

mg 
kg -1 

mg 
kg -1 

mg 
kg -1 

mg 
kg -1 

mg kg -
1 

  

DR - 0-5 cm 0.00 0.07 26.50 5.80 0.23 71.00 5.98 11.9 1.50 7.30 - 4.31 

DR - 5-10 cm 0.15 3.94 14.50 1.80 0.16 25.80 2.02 9.70 0.50 2.50 - 4.38 

DR - 10-20 cm 0.11 2.48 13.50 11.00 0.18 22.10 1.49 12.5 0.50 1.40 - 4.42 

DR - 20-30 cm 0.11 2.39 9.00 7.50 0.14 12.70 1.22 10.6 0.40 0.80 - 4.58 

DR - 30-40 cm 0.07 1.81 7.00 5.90 0.12 8.80 1.29 7.50 0.20 0.40 - 4.59 

DR - 60-70 cm 0.05 1.25 6.50 4.60 0.12 9.50 0.40 10.8 0.30 0.40 - 4.50 

C - 0-5 cm 0.05 1.38 19.50 5.10 0.18 46.30 2.25 13.0 0.80 1.40 2.69 4.25 
C - 5-10 cm 0.13 3.40 38.00 8.90 0.22 53.80 4.43 16.6 1.20 1.90 2.68 4.29 
C - 10-20 cm 0.23 5.94 13.50 1.90 0.19 28.90 2.38 13.6 0.70 1.10 2.83 4.36 
C - 20-30 cm 0.11 2.80 14.50 1.30 0.19 21.20 1.65 11.8 0.60 0.90 2.95 4.55 
C - 30-40 cm 0.09 2.59 10.00 8.40 0.17 26.60 0.89 12.4 0.50 0.40 2.84 4.55 
C - 60-70 cm 0.07 2.22 9.50 6.90 0.11 11.60 0.59 11.8 0.40 0.40 2.83 4.60 
CP-0-5 cm - - 28.2 2.1 0.55 1.77 1.19 9.75 0.23 0.83 2.83 4.27 
CP-5-10 cm 0.04* 0.20* 1 0 0.50 1.65 0.90 11.5 0.15 0.68 3.20 4.67 
CP-10-20 cm 0.037* 0.28* 0.5 0 0.15 1.67 0.37 11.8 0.23 0.25 3.46 5.05 
CP-20-30 cm 0.03* 0.15* 0.8 0 0.10 0.55 0.35 11.1 0.20 0.28 3.93 5.31 
CP-60-70 cm 0.017* 0.08* 0.6 0 0.05 0.37 0.28 9.38 0.10 0.30 4.23 5.37 

CP-90-100 cm 0.01* 0.07* 0.7 0 0.05 0.80 0.27 9.25 0.15 0.30 4.20 5.28 
DR= Drainage (July 2008) 
C=Control (July 2008) 
CP=Campina forest 
* Campina data from Luizão (1996) 

 
Exchangeable cation concentrations were lowest in the sandy campina soil, which also 

had the highest soil pH and pHKCl values. Al+H were again dominant on the exchange 
complex, but this was followed by Fe and very low levels of, in descending order, Ca > K > P 
> Mg. Observations of %C and %N made by Luizão (1996) in campina forest soil indicated 
that %N was similar to that measured in the riparian forest plots, whereas %C was much 
lower and close to that found in the top soil of the drained plot (Table 2). The soil C:N ratio 
also remained fairly constant throughout the profile in the campina forest, but was 
significantly lower at 9.4±1.0 (Luizão, 1996).  
 
3.4. Soil CO2 respiration 

Soil CO2 respiration rates were significantly different between forest types and drainage 
and control plots (Figure 7). The campina forest exhibited very low soil respiration rates at 
1.2±0.3 µmol CO2 m-2 s-1, whereas campinarana forest showed the highest rate at 5.7±1.8 
µmol CO2 m-2 s-1. Both forest types grow on soil with similar coarse sandy texture and with 
phreatic levels generally below 0.8 m. These forests do differ in the presence (campinarana) 
or absence (campina) of a root mat and continuous litter layer, which may explain the large 
difference in autotrophic and heterotrophic soil respiration rates. The riparian forest on near-
saturated sandy soil (before drainage tube installation) respired at an intermediate rate of 
3.6±0.6 µmol CO2 m-2 s-1, which is similar to that measured in the tall terra firme forest on the 
plateau. 
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Figure 7. Boxplot of soil CO2 respiration measurements at the different forest plots: 
Drainage plot (DR), control plot (C), campinarana plot (CPNR) and campina plot 
(CP). The grey rectangle separates measurements done before and after drainage tube 
installation and the numbers between brackets indicate the month during which 
measurements were made in 2007, where month 4 represents the start of the drainage 
experiment. The black vertical bar separates campinarana and campina measurements 
from those made in control and drainage plots. Fluxes in both campinarana and 
campina forests were measured over periods of several weeks in the wet, as well as in 
the dry season. 

 
At the start of the drainage experiment soil respiration was measured at two different 

locations within the drained area between 18 November and 5 December 2006, followed by 
measurements at a single location in the control plot between 5 and 12 December, 2006, and 
at a second location between 7 and 9 February, 2007. Measured soil respiration rates were 
very similar in control and drainage plots at 3.6±0.6 and 3.7±0.7 µmol CO2 m-2 s-1, 
respectively (Figure 7). A comparison of the soil respiration rates in the drainage and control 
plots indicated significant reductions of 42% (2.1±0.2 µmol CO2 m-2 s-1) in the former with 
respect to the initial value after 8 months of drainage and 76% (0.8±0.2 µmol CO2 m-2 s-1) 
after 16 months of drainage, whereas soil respiration in the control plot remained at or above 
the initial value at 5.1±0.8 µmol CO2 m-2 s-1 after 8 months and 3.7±2.8 µmol CO2 m-2 s-1 after 
16 months (Figure 7). Another drought experiment also found 20% of soil CO2 emission 
decrease due to soil moisture decrease (Meir et al., 2008, 2009). This suggests that the 
drainage of the riparian forest soil caused a significant decrease in soil CO2 respiration to the 
values observed in the campina forest plot.  

This study is the first to provide information on soil respiration in campina forest and on 
the impact of drainage of sandy valley soil on soil respiration rates. The drainage experiment 
revealed that the largest changes are likely to occur in the top soil where the carbon and 
nitrogen contents decreased markedly after artificial lowering of the phreatic level. The 
reduction in the carbon and nitrogen content in the top soil were matched by a strong 
reduction in the soil respiration rate as compared to that measured in the same plot before 
drainage and in the control plot. The observations suggest that changes in topsoil carbon and 
nitrogen content occur within a few months after a lowering of the phreatic level and that this 
has a pronounced effect on the soil respiration rate. Such fast response may be caused by a 
combination of the rapid flushing of fine particulate and colloidal carbon in the soil pores to 
lower soil layers with infiltrating rainfall (Marques, 2009) and removal of particulate carbon 
in the form of CO2 by enhanced decomposition rates in the better aerated top soil after 
drainage. Impacts of drainage on other nutrients and on those in deeper soil layers were not 
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observed (Table 2, Figures 5 and 6) and may only become apparent after a more extended 
period of drainage.  

The soil respiration rate in the drained plot became as low as that in the campina plot, 
which presumably reflects the low C and N contents in the topsoil after drainage, where most 
of the soil CO2 respiration is produced (Hanson et al., 2000). These soil carbon and nitrogen 
levels were much lower than those in the control plot where soil CO2 respiration remained 
constant and at a rate similar to that in the drainage plot before the start of the experiment. Xu 
et al. (2004) and Lambers et al. (1998) have reported that nitrogen and carbon availability in 
the soil are important for both plant growth and the production of CO2. Hence, the reduction 
of soil CO2 respiration in the drainage plot may be an indication that large-scale drainage of 
these sandy valley areas, and associated decrease in the top soil carbon and nitrogen contents, 
may lead to a change in the carbon cycle towards that of campina forest. A lowering of the 
phreatic level in this zone and corresponding infiltration of rain water could affect soil 
respiration fluxes rapidly, as was observed in the present study (Figure 7). 

Although a modest decrease in the phreatic level may not cause hydrological stress on 
the vegetation, the almost daily precipitation events (Figure 2b) may eventually cause a 
further flushing of particulate organic carbon and nutrients from the topsoil to deeper layers in 
the valley. However, with the low carbon contents in our sandy soils, this is less likely to be 
very important here. Finally, because the phreatic level is at or very close to the soil surface in 
riparian forest, degassing of groundwater with high pCO2 might also contribute to measured 
soil respiration. Further research is required to discover if degassing of shallow groundwater 
is an important factor in this area or if biotic process are dominant. Measuring such individual 
contributions of biotically, chemically and physically produced CO2 to the soil respiration 
flux is extremely difficult, but would provide valuable insight into the importance of the 
various processes generating CO2 and would also be important for predicting changes in soil 
respiration as a consequence of  a drier climate.  
 
4. CONCLUSIONS 
 

Forests on sandy soils cover a significant part of the central Amazonian landscape. The 
present study shows that depending on the drainage status of sandy soils, a large natural 
variation exists in soil carbon, nitrogen and exchangeable cation concentrations, soil water 
chemistry and litter decomposition rates. Litter decomposition and soil CO2 respiration rates 
are very low in campina forests, where the capacity of the coarse sandy soil to retain nutrients 
is extremely low. The highest soil CO2 respiration rates within the terra firme landscape are 
found in ecotone campinarana forests that form the transition from riparian forests on near-
saturated sandy soils to tall terra firme forests on slopes and plateaus with clayey soils. 

Under present climate conditions the vegetation in the riparian forest is not likely to 
experience significant periods of droughts. Artificial drainage of the riparian forest plot, 
lowering the phreatic level by a modest 0.3 m, did not cause apparent changes in the soil 
nutrient content, chemical composition of soil water or litter decomposition rates within the 
study period of one year. However, marked reductions were observed in the top soil carbon 
and nitrogen content, as well as in the soil CO2 respiration rate, which decreased to the levels 
observed in campina forest. The drainage study therefore indicates that the riparian forest soil 
is very sensitive to changes in the phreatic level. It remains unclear if slower changes in soil 
and water chemistry in the subsoil will become apparent within the next few years. This 
suggests that the characteristics of drained riparian forest soil show a transition towards that 
of campina forest, with its low nutrient content and very low soil respiration rate. However, 
shifts in vegetation species and a future development of a root mat, such as exists in the 
campinarana forest, may result in increased soil respiration rates. It is as yet uncertain what 
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the direction of succession of drying riparian forest will be and continued monitoring of the 
drained and control plots may provide valuable clues in this sense. 

The large difference in soil respiration rates between campina and campinarana forests 
imply that knowledge about the likelihood of riparian forest to be succeeded by one type or 
the other is crucial for determining the future carbon budget of terra firme rainforest 
ecosystem experiencing a drier climate.  
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