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ABSTRACT  
Water contamination comes from many different sources, including, among others, factories, 

sewage treatment plants, mining activities (heavy metals), food-processing waste, agriculture runoff, 

animal waste, disposal of personal care products, and household chemicals. Therefore, the reuse of 

wastewater has become a fundamental strategy for sustainable water management and maintaining 

environmental quality. In this sense, this research presents a simple and economic alternative to solving 

the problems caused by greywater, resulting from laundry activities. This paper evaluates a mixed 

system for the treatment of greywater. The mixed system has physical filters that are composed of river 

stone, concrete, river sand, and coal. A bioremediation technique is also evaluated, involving two types 

of aquatic plants, watercress (Nasturtium officinale L.) and duckweed (Lemma minor L.). This study 

showed significant differences in pH reduction, from 9.56 to 7.50, total suspended solids (TSS), from 

1742.00 mg/L to 298.50 mg/L, phosphates, from 1.12 mg/L PO4
3¯ to 0.31 mg/L PO4

3- , and chemical 

oxygen demand (COD), from 472.38 mg/L to 8.52 mg/L. Thus, the results indicate that this system is 

efficient for the reuse of grey water for irrigation uses. Moreover, each parameter, with the exception of 

dissolved oxygen and total suspended solids (TSS), meets the maximum limits set by the Environmental 

Quality Standards for Category 3: irrigation water for vegetables and animal beverages and the FAO 

irrigation water standards. 

Keywords: biological filter, detergents, macrophytes, physical filter, water quality.   

Sistema misto de tratamento de águas cinzas para irrigação 

RESUMO 
As atividades pelas indústrias, população urbana e rural, são fontes mais frequentes na 

poluição de água, devido nisso tem se tornado necessário, principalmente a reutilização das 

águas resíduas como uma estratégia fundamental. Nesse sentido esta pesquisa apresenta uma 

alternativa simples e econômica para solucionar os problemas causados pela água cinzas das 

atividades de lavanderia doméstica, com o objetivo de avaliar um sistema misto de tratamento 

de água cinza. Para isso foi estabelecido um sistema misto com filtração física, compostos de 

pedra de rio, concreto, areia de rio e carvão, seguido pela Biorremediação com duas plantas 
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aquáticas, agrião (Nasturtium officinale L.) e lentilha d’água (Lemma minor L.). Os resultados 

tiveram diferenças significativas na redução do pH de 9.56 até 7.50, os sólidos suspensos totais 

(SST) de 1742.00 mg/L até 298.50 mg/L, os fosfatos de 1,12 mg/L PO4
3¯ até 0,31 mg/L PO4

3¯ 

e demanda química de oxigênio (DQO) de 472,38 mg/L até 8,52 mg/L, por tanto indicam que 

o sistema é eficiente para o reuso da água cinzas com fim de irrigação. Finalmente, todos os 

parâmetros, a diferença do oxigênio dissolvido e os sólidos suspensos totais (SST), cumprem 

com os limites máximos permitidos pelos padrões de qualidade ambiental para a categoria três: 

água de irrigação para vegetais e bebidas de animais e os padrões para irrigação pela FAO. 

Palavras-chave: detergentes, filtro biológico, filtro físico, macrófitas, qualidade da água. 

1. INTRODUCTION  

Water is one of the essential resources for the development of natural life in all its forms 

(Cai et al., 2016). However, the importance of this resource has not been taken into account 

until the end of the 19th century, when it was discovered as the origin of numerous water-related 

infectious diseases (Abellán, 2017). Moreover, the scarcity and deterioration of water resources 

have been related to anthropological activities, for example, poor agriculture practices, 

livestock, and mining, along with accelerated industrial development and rapid population 

growth (Bwapwa, 2018). All these factors lead to health problems due to deficient water 

consumption (Guzmán et al., 2016). In developing countries, such as Peru, most diseases are 

caused by poor water supply (Ferro-Mayhua et al., 2019). 

The service of water supply and sanitation is a major problem in Peru (Calzada et al., 

2017). Accordingly, by the beginning of 2018, an estimated 10.6% of the Peruvian population 

lacked access to drinking water services in the public system. Furthermore, the inadequate 

disposal of greywater outside the sewerage system is of great concern. As a result, there is an 

increase in the proliferation of vector-borne diseases that affect the most vulnerable population 

(Gutierrez-Espino and Romero-Cóndor, 2018). Greywater or sullage is the result of laundry 

activities, showers, baths, hand basins, and washing machines. These waste waters usually have 

hazardous contaminants such as phosphate, a typical compound in detergents, which causes the 

eutrophication of water bodies (Fowdar et al., 2017; Pérez-Díaz et al., 2019).  

Those water issues are a major concern in the search for new supply sources and treatment 

systems, as well as finding alternatives to mitigate the environmental impacts caused by the 

inadequate disposal of greywater. In fact, water is a valuable resource that must be preserved 

in order to ensure a permanent supply for a sustainable use. There are a large number of 

techniques for treating wastewater, which range from conventional techniques, mostly physical 

and chemical, such as sedimentation, filtration or chlorination, to alternative techniques, 

generally physical and biological, such as bioremediation or filtration involving inert material 

such as sand or gravel (Ghernaout et al., 2017; Poirier et al., 2019). Alternative techniques, 

although not generally used by both national and local government bodies, may be part in the 

response to greywater treatment in rural or low-finance areas, as they are proven to be efficient 

in removing organic and inorganic pollutants and pathogenic organisms (Boczkaj and 

Fernandes, 2017). 

Regarding alternative treatments, bioremediation is one of the most important techniques 

that is increasingly used due to its easy and simple use and its friendliness to the environment 

(Azubuike et al., 2016). These techniques usually involve planting emergent plants, such as 

watercress (Nasturtium officinale L.); but in some cases, organisms such as worms have also 

been considered. It has been proven that the use of Californian worms (Eisenia fetida, Savigny, 

1826) or water hyacinth (Eichhornia crassipes (Mart.) Solms) is highly effective in treating and 

purifying greywater, especially in terms of organic matter parameters which include 
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biochemical oxygen demand (BOD5) or chemical oxygen demand (COD) (Reyes Farje and 

Morales Rojas, 2019). 

In this sense, this work proposes a mixed treatment system based on bioremediation and 

filtration techniques to treat greywater which is generated in a building, testing the evolution of 

the physicochemical parameters throughout the system. Furthermore, we analyze the spatial 

variation of the physicochemical parameters in the system and, finally, determine whether the 

parameters meet national and international regulations and standards regarding water usage in 

the irrigation of vegetables. 

2. MATERIALS AND METHODS 

2.1. Study Area 

The experiment was conducted in the building "La Alianza Alemana", with an average 

population of 18 people and an age distribution of the occupants above 18 years. This building 

is located in the province of Chachapoyas, Amazonas in northern Peru. It is located at an altitude 

of 2483 meters above sea level, between the coordinates 6°13′00″ S and 77°51′00″ O. 

2.2. Mixed system design 

The mixed treatment system for the purification of greywater has two parts, which are 

connected to each other. The first one is a grey water collection system, with a capacity of 100 

litres, with the purpose of adequately feeding the filter systems of the following component. 

The second part has three mechanical filters, each with a capacity of 600 litres, and whose 

measurements are 100 cm in width per 100 cm in length and 60 cm in depth. Each filter's base 

is composed of three layers; the first layer has 0.24 m3 of 1" river stone, the second one of 0.04 

m3 of concrete, and the last one of 0.24 m3 of sand mixed with 0.06 m3 of coal generated from 

wood. Furthermore, in the third filter, we also included two bioremediation plants, duckweed 

(Lemma minor L) and watercress (Nasturtium officinale L), which were distributed in equal 

parts. It was taken an average height of 10 centimetres into account for the aforementioned 

plants, thus ensuring their proper development (Figure 1). 

 
Figure 1. Design of the mixed treatment system based on 

filtration and bioremediation techniques (PM1: Collection, 

PM2: Filter 1, PM3: Filter 2, PM4: Filter 3) 

2.3. Methodology  

Sampling was carried out every 15 days between June and July 2018.  For each established 

sampling point (PM1, PM2, PM3 and PM4) we collected four samples. The collection, storage, 
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and transfer of samples, including laboratory analysis, were done according to APHA et al. 

(2017). Moreover, data collection of pH and Dissolved Oxygen (DO) was performed on-site 

using a Hanna Model HI 98194 multiparametric water test. The samples to determine 

biochemical oxygen demand (BOD5) and chemical oxygen demand (COD), parameters that 

establish the contamination of organic matter in water bodies, were collected in dark plastic 

containers and  transparent plastic bottles, thereby allowing the physicochemical analysis of 

electrical conductivity (EC), total dissolved solids (TDS), total suspended solids (TSS), 

alkalinity and phosphates. Such analyses were performed at the Soil and Water Laboratory of 

the Research Institute for the Sustainable Development of the “Ceja de Selva” (INDES-CES) 

from the National University Toribio Rodriguez de Mendoza de Amazonas. 

2.4. Statistical analysis 

First of all, a graphic analysis of the box and whiskers of each parameter per sampling 

point was created to study the behaviour of the parameters in each part of the system. Likewise, 

a Kruskal-Walis analysis of each parameter was made and subsequently a post-hoc test, a 

Mann-Whitney test with the Bonferroni adjustment method, was carried out on the parameters 

that showed significant differences, in the interest of identifying the existence of differences 

between individual parts of the system, and thus being able to compare the behaviour and 

interrelationship at the inflow and outflow stages of the system. To understand the relationship 

between the studied parameters, a Spearman correlation analysis was performed. Finally, it was 

verified graphically whether all the parameters met the maximum permitted limits for pH, DO, 

EC, Alkalinity, BOD and COD, set by the Environmental Quality Standards (EQS) of Water 

for Category 3: irrigation water for vegetables and animal beverages, established by the 

Ministry of Environment, Peru (2017). Due to the fact that the parameters of TDS, TSS and 

phosphate are not included in the EQS, they were tested with standards established by the Food 

and Agriculture Organization of the United Nations (FAO) for water quality in agriculture 

(Ayers and Westcot, 1994). All statistical analyses were performed at a significance level of 

p<0.05 with the statistical software R v. 3.6.3 (R Development Core Team, 2020). 

3. RESULTS AND DISCUSSION 

3.1. Performance of the physicochemical parameters in the mixed treatment system 

We found that the parameters that showed a reduction throughout the treatment system are 

pH ranging from 9.56 to 7.50, DO from 6.58 mg/L to 3.13 mg/L, TSS from 1742.00 mg/L to 

298.50 mg/L, alkalinity from 106.06 mg/L to 76 mg/L, phosphates from 1.12 mg/L to 0.31 

mg/L, BOD from 28.13 mg/L to 12.31 mg/L and COD from 472.38 mg/L to 8.52 mg/L. On the 

other hand, the parameters that experienced an increase are EC rising from 186.75 µS/cm to 

328.25 µS/cm and TDS from 112.05 mg/L to 196.95 mg/L (Figure 2). 

It should be noted that pH is one of the parameters which is most affected by the mixed 

treatment system, as it has been reduced from alkaline to almost neutral (Figure 2A). This 

performance can also be observed in fast, slow and mixed sand filters for obtaining drinking 

water (Laghari et al., 2018). In fact, this parameter has enormous importance in wastewater 

treatment, due to the high influence on biological, chemical or physical treatments (Aelterman 

et al., 2006; Issabayeva and Dih, 2019). As an example of this, it is relevant in the ammonium 

oxidation process (Tomaszewski et al., 2017), in advanced oxidation processes (Boczkaj and 

Fernandes, 2017), as well as in microbiological processes for the elimination of phosphorus 

(Stokholm-Bjerregaard et al., 2017). 
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Figure 2. Average values of pH (A), DO (B), EC (C), TDS (D), TTS (E), Alkalinity (F), 

Phosphates (G), BOD (H), COD (I) at the different sampling points in the system.  

In contrast, regarding DO, it was negatively affected since it had a significant decrease 

(Figure 2B). Usually this is typical at the bottom of oxidation ponds (Noikondee et al., 2019). 

However, DO reduction is very common in biological treatments, since oxygen consumption is 

an excellent indicator that the system works properly (Harja et al., 2016). Nevertheless, it would 

be ideal to include an additional method in this system to increase DO, given that it is essential 

to biodegrade contaminants, especially organic matter (Radzi et al., 2020). 

In relation to EC and TDS parameters, which are directly related to each other, they 

experience an increase along the treatment system points (Figure 2C and 2D). These parameters 

usually decrease when biological treatments are applied (Duque-Sarango et al., 2018). This 

behavior is due to the dragging of particles in the system when the filters contain sand and 

carbon (Pompei et al., 2017). Nevertheless, just the opposite occurs with TSS (Figure 2E), 

owing to the fact that there are seasonal phases in the filter, and in the absence of pumps, 

sedimentation processes, therefore take place, leading to a settling of solid particles to the 

bottom (Merizalde et al., 2019). 

The alkalinity decreased from Point PM1 to Point PM2 of the treatment; however, it was 

constant in the remaining points (Figure 2F). Alkalinity is an important parameter, not only 

because it varies according to the type of treatment and temperature, but also because it is an 

indicator for making pH adjustments in the systems, as it is strongly related to it, and thus 
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prevents corrosion or incrustation in the treatment systems (Silva-Teira et al., 2018). The 

reduction of phosphate (Figure 2G) is mainly due to assimilation by aquatic plants, since it is 

an important nutrient for their growth (Delgadillo-Mirquez et al., 2016). 

The organic matter, BOD and COD parameters showed a large decrease throughout the 

mixed system (Figure 2H and 2I). The same inclinations are found in other water treatments, 

for instance, stabilization or oxidation ponds, which, by degrading organic matter and 

oxygenating it, have proven to be efficient, reducing up to 82% of organic matter (Peña et al., 

2018). Similarly, it has been shown that aquatic plants are efficiently removing organic matter 

in the range of 70-86% when using Eichhornia crassipes (Mart.) Solms, and about 58% when 

using Lemma minor L, both of which are used in this research (Rodríguez-Miranda et al., 2010). 

 

3.2. Spatial dynamics for the mixed treatment system 

The Kruskal-Wallis analysis for the nine physicochemical parameters showed significant 

differences for pH, TSS, Phosphates and COD (Table 1). After applying the post-hoc test 

(Mann-Whitney test), it was found that point number one of the systems differs from the rest 

of the treatment system 

Table 1.  Kruskal-Wallis analysis and post-hoc test (Mann-Whitney 

test) for the analyzed physicochemical parameters. 

Parameters 
Kruskal-Wallis Post-hoc 

χ2 Sig. Different PM Same PM 

pH (Units) 8.54 0.036* 1 3,4,2 

DO (mg/L) 6.77 0.079ns Same 

EC (µS/cm) 7.48 0.057ns Same 

TDS (mg/L) 7.48 0.058ns Same 

TSS (mg/L) 8.25 0.041* 1 3,4,2 

Alkalinity (mg/L) 6.55 0.088ns Same 

Phosphates (mg/L) 8.76 0.033* 1 2,4,3 

BOD5 (mg/L) 5.87 0.118ns Same 

COD (mg/L) 10.41 0.015* 1 2,3,4 

*Significant (P < 0.05), ns not significant (P > 0.05). 

As for the pH, TSS, phosphates and COD parameters, those parameters have been affected 

by the mixed treatment system (Table 1). Both pH and TSS are significantly affected by the 

action of mechanical filters, due to the retention of particles larger than 0.45 μm (Laghari et al., 

2018) and the effect of calcium carbonate that is usually found in the sand (Holtman et al., 

2018). The significant effects on phosphates are due to the action of aquatic plants when using 

them as a nutrient (Delgadillo-Mirquez et al., 2016), whereas the effects on COD are mainly 

due to the path taken by the water through the various mechanical filters, which promotes 

oxygenation and thus the degradation of organic matter (Achak et al., 2019). 

3.3. Water quality testing of the mixed treatment system 

Regarding water warmth evolution, it is noted that at the beginning, all parameters meet 

the regulations, but pH, TSS, BOD and COD. On the other hand, at the end of the treatment, 

the only parameters that fail to meet the regulations are the DO and the TSS (Figure 3). 

If we compare the final values of pH, OD, EC, Alkalinity, BOD and COD parameters with 

the Environmental Quality Standards (EQS) for Water, Category 3: irrigation water for 

vegetables and animal beverages, established by the Peruvian Ministry of the Environment 

(Peru, 2017), we find that they all meet the standard, except for the  DO. TDS, TSS and 
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phosphate parameters were compared with the standards established by the FAO, for water 

quality in agriculture, given that Peruvian regulations do not include them within the RCTs 

(Figure 3). Although pH is not widely used to assess irrigation water quality, it is important to 

establish the relative concentrations of dissolved carbonate species, which affect plant nutrient 

uptake (Jaramillo and Restrepo, 2017). 

 
Figure 3. Comparison of average values of pH (A), DO (B), EC (C), TDS (D), TTS (E), 

Alkalinity (F), Phosphates (G), BOD (H), COD (I) regulations. 

Parameters which are of primary importance for irrigation include phosphates and organic 

matter (BOD and COD), due to their strong influence on plant growth (Da Silva Gomes et al., 

2019). Nevertheless, low DO concentration has a major disadvantage, since values found to be 

lower than 3.0 mg/L make biota survival impossible (Rubio Arias et al., 2014). Therefore, one 

option may be the implementation of air pumps, in order for the DO values to be increased. 

Both TDS and phosphates meet the limits established by the FAO. However, TSS exceeds the 

maximum limit allowed. Nevertheless, that limit is only for drip irrigation to avoid clogging 

(Ayers and Westcot, 1994). This means that we can use them for direct irrigation. 

4. CONCLUSIONS 

Our results demonstrated that the mixed treatment system improved greywater quality for 

irrigation uses, notably by reducing levels of pH, TSS, phosphates, BOD and COD. As a result, 
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these parameters were favourably influenced in each system filter. Nevertheless, the EC and 

TDS parameters were negatively affected by the sediment carry-over in the treatment system, 

as well as the DO reaching lower values for the development of biota.   

Finally, all final values of parameters meet the FEA and FAO standards for irrigation 

water, except the DO. Therefore, we suggest implementing an aeration system within the 

treatment. 
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