
 

 

 

Ambiente & Água - An Interdisciplinary Journal of Applied Science 

ISSN 1980-993X – doi:10.4136/1980-993X 

www.ambi-agua.net 

E-mail: ambi.agua@gmail.com 

 

 

This is an Open Access article distributed under the terms of the Creative Commons 

Attribution License, which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original work is properly cited. 
 

Furosemide in water matrix: HPLC-UV method development and 

degradation studies 

ARTICLES doi:10.4136/ambi-agua.2406 

Received: 19 Apr. 2019; Accepted: 30 Nov. 2019 

Ana Isabel Machado1* ; Rita Fragoso2 ;  

Ana Vitória Martins Neves Barrocas Dordio3 ; Elizabeth Duarte2  

1Linking Landscape, Environment, Agriculture and Food (LEAF). Marine and Environmental Sciences Centre 

(MARE).  Centre for Environmental and Marine Studies (CESAM). Higher Institute of Agronomy. University of 

Lisbon, Tapada da Ajuda, s/n, CEP: 1349-017, Lisboa, Portugal 
2Linking Landscape, Environment, Agriculture and Food (LEAF), Higher Institute of Agronomy, University of 

Lisbon, Tapada da Ajuda, s/n, CEP: 1349-017, Lisboa, Portugal.  

E-mail: ritafragoso@isa.ulisboa.pt, eduarte@isa.ulisboa.pt 
3Marine and Environmental Sciences Centre (MARE).  School of Science and Technology. Chemistry 

Department. Évora University, Rua Romão Ramalho, nº 59, CEP: 7000-671, Évora, Portugal.  

E-mail: avbd@uevora.pt 
*Corresponding author. E-mail: isabellmachado@gmail.com 

ABSTRACT 
This study developed a method for furosemide quantification through high performance 

liquid chromatographic technique. Special attention was given to solute loss and storage 

stability due to furosemide’s low solubility and photosensitivity, respectively. The performance 

of Nylon and PVDF filters was tested in a 2 mg.L-1 furosemide solution. PVDF filters showed 

better recovery capacity and therefore are more suitable for furosemide filtration.  Over eight 

days, three different storage conditions were studied to access furosemide degradation 

susceptibility: (i) exposure to light at room temperature, (ii) storage at room temperature 

without exposure to light, and (iii) storage at 4ºC without exposure to light. The study 

demonstrated that after 48 h under natural light exposure furosemide was completely degraded. 

Furosemide solution stored in the dark was stable. Storage temperature did not seem to affect 

furosemide concentration. The study shows that the selection of more suitable filter and storage 

conditions for furosemide determination is crucial to avoid underestimation errors. 

Keywords: filter retention, pharmaceutical, photodegradation. 

Furosemida em matriz de água: desenvolvimento de um método 

HPLC-UV e estudos de degradação 

RESUMO 
O presente estudo desenvolve um método para a quantificação de furosemida através de 

cromatografia de alta resolução. Devido à baixa solubilidade do composto e à sua 

fotossensibilidade, neste estudo avaliou-se as possíveis perdas do composto ao longo do método 

de quantificação e a sua estabilidade durante o armazenamento ao longo de oito dias.  Para tal, 

foram testados dois filtros (Nylon e PVDF) com o mesmo diâmetro e tamanho de poro para 

uma concentração de furosemida de 2 mg.L-1. A degradação da furosemida foi estudada para 
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três condições diferentes de armazenamento: com exposição solar à temperatura ambiente, sem 

exposição solar à temperatura ambiente e sem exposição solar a 4°C. O estudo demonstrou que 

o composto furosemida atinge a degradação completa com exposição solar após 48h. A solução 

de furosemida permaneceu estável ao longo da experiência quando protegida da luz. A 

temperatura de armazenamento não parece afetar a concentração da solução de furosemida. O 

presente estudo mostrou que para análises da furosemida, a escolha do filtro adequado e as 

condições de armazenamento devem ser consideradas para evitar erros de subestimação. 

Palavras-chave: fármaco, foto degradação, retenção do filtro. 

1. INTRODUCTION 

The presence of pharmaceutical active compounds (PhACs) in different water bodies is 

well documented in several studies (Böger et al., 2018; Kuster et al., 2008; Paíga and Delerue-

Matos, 2016; Pereira et al., 2017). After ingestion, pharmaceuticals are only partially absorbed 

and the remainder is excreted as the parent compound or their metabolites via urine or feces. 

Conventional wastewater treatment processes are not completely efficient in removing PhACs 

(Ternes, 1998; Martín et al., 2012). Therefore, the development of methods to correctly quantify 

these compounds in specific matrices are required, and several options already exist. 

Environmental studies commonly determine the presence of PhACs in samples using methods 

for the determination of a broad variety of compounds (Cruz-Morató et al., 2014). Although 

this approach brings benefits such as reductions in time and cost, some inherent restrictions to 

the accuracy of the determination of each compound is associated, such as analyte loss due to 

membrane filter adsorption. HPLC-UV analyses requires samples to be filtered to avoid 

clogging the equipment and capillaries and to extend the column’s lifespan (Carlson and 

Thompson, 2000). Moreover, compound stability studies are also necessary to prevent 

associated quantification errors, particularly along analyses procedures. For some pollutants, 

the knowledge of all interferences in the quantification process are still not fully known and 

require further investigation.  

In Europe, anti-hypertensive substances, recently included in the cardiovascular system 

pharmacotherapeutic group, have the highest consumption rates (OECD, 2016). Included in this 

group, furosemide (FUR) is a loop diuretic pharmaceutical prescribed to treat cases of 

hypertension and edema (Bosch et al., 2008). In Portugal in 2014, FUR occupied the 15th place 

in the top 100 active substances ranking with the highest number of packages sold in the 

National Health System (INFARMED, 2014). According to Prandota and Witkowska (1976), 

after human consumption up to 70% of furosemide is absorbed. However, 90% of the non-

absorbed drug is excreted as the parent compound (Zuccato et al., 2005). Therefore, in countries 

such as Portugal, FUR is expected to be found in wastewater treatment plants (WWTPs) (Santos 

et al., 2013). According to the literature, the presence of FUR in WWTP influents and effluents 

can widely fluctuate from mg.L-1 to ng.L-1 (Jelic et al., 2011; Salgado et al., 2010; Santos et al., 

2013), while in surface water bodies it usually occurs in low concentrations of µg.L-1 to ng.L-1 

(Silva et al., 2011; Valcárcel, 2011; Matamoros et al., 2012).  

Although several studies show the presence of FUR in different environmental samples, 

its concentration varies widely, inducing uncertainty in the PhAC relevance in terms of 

environment contamination and particularly in the accurate efficiency assessment of the 

WWTPs on removing this contaminant. Therefore, developing a quantification method for FUR 

that accounts for the different interferences that can exist along the analyses is vital. Moreover, 

the use of simple matrices such as ultrapure water for preliminary tests can provide more clear 

results, especially for compounds such as FUR that are hydrophobic and have low solubilities 

(Table 1), and thus are more prone to be lost during simple sample preparation procedures, such 
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as filtration. Saturation of the filter adsorption sites generally can minimize these losses (Pillai 

et al., 2016). However, sometimes the sample volume is not enough for pre-wetting the filters, 

and thus the selection of the most suitable type of filter can be a key aspect. 

Table 1. Structure, physical and chemical properties of furosemide. 

Common Name Furosemide 

Chemical structure 

 

CAS-Number 54-31-9 

Molecular formula C12H11ClN2O5S 

Molecular weight (g.mol-1) 330.75a 

Melting Point (˚C) 206a 

Ionisation constant, pKa pKa= 3.8b 

Octanol/Water Partition Coefficient, log Kow 2.03c 

Water solubility, at 30˚C (mg.L-1) 73.1d 

Source: aO’Neil (2001). bBerthod et al. (1999). cSangster (2001). dYalkowsky 

and Dannenfelser (1992). 

Another relevant factor is that the literature on methodologies for FUR quantification as a 

single target is only common in the scope of human or animal health, or for pharmaceutical 

dosage control (Bosch et al., 2008). Hence, most of the studies on FUR determination were 

performed in matrices of human and animal urine or plasma. The complexity of such matrices 

can mask other interferences along the analytical procedure. 

This study sought to contribute to the definition of an appropriate methodology for FUR 

determination in a water matrix by HPLC-UV and to better understand the stability of the 

compound along the analysis-preparation procedure. 

2. MATERIALS AND METHODS 

2.1. Chemicals and materials 

Analytical grade furosemide (99.8% purity) was purchased from Sigma-Aldrich (Lisbon, 

Portugal); see Table 1 for its main characteristics. Phosphoric acid (>85% purity), HPLC-grade 

solvents acetonitrile and methanol were obtained from Enzymatic, S.A. (Loures, Portugal). 

Ultra-pure water was prepared from a Millipore Milli Q system. Both Whatman 13 Puradisc 

syringe filters (nylon and PVDF - Polyvinylidene fluoride) were supplied by Enzymatic, S.A. 

(Loures, Portugal). 

2.2. Standards solutions 

Furosemide stock standard solution containing 10 mg.L-1 was prepared. Furosemide was 

dissolved in 1 ml of methanol and filled to the 1 L mark with ultra-pure water. An ultrasonic 

bath was used to help the dissolution of furosemide. For furosemide quantification, standard 

solutions were prepared within the range of 0.1-4 mg.L-1. All solutions were stored in the dark 

and covered with aluminium foil to avoid photodegradation. The 10 mg.L-1 FUR solution was 

scanned between the 190 and 350 nm UV region. The wavelength of 233 nm corresponding to 

the maximum absorption peak has been therefore selected to carry on the experiment.  Electric 

conductivity and pH were also assessed. 

2.3. Quantification and analytical method validation 

Furosemide quantification was carried out in a HPLC - Beckman Coulter System Gold, 

with a Solvent Module 126 and a Diode Array Detector 168, using 32 Karat Software, version 
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8.0, with a variable wavelength detector (190-800 nm) at 233 nm and with a 20 µL volume 

injector loop. Samples were determined with a flow rate of 1 mL.min-1. A reversed-phase 

analytical column Zorbax Eclipse XDB-C8 (4.6x150 mm; 5 µm) was used. The composition of 

the mobile phase used in furosemide analyses was previously selected for an isocratic elution 

mode using trial mixtures of acetonitrile and ultra-pure water acidified with phosphoric acid 

(0.1% v/v) in different proportions (50:50, 55:45, 60:40, 65:35 and 70:30). The mixture 

composed of 60% acetonitrile and 40% ultra-pure water (acidified with phosphoric acid) was 

selected, as the corresponding retention time for furosemide was below 4 min., thereby allowing 

the quantification of the pharmaceutical in a reasonably short time. Samples were injected (three 

replicates) with an automatic injector manufactured by Spark Holland BV – MIDAS, at room 

temperature (16-20˚C). 

This analytical method was validated according to the International Conference on 

Harmonization (ICH) guidelines for validation of analytical procedures (United States, 1996), 

based on the following parameters: linearity, sensitivity, precision (intra-day) and accuracy. 

A calibration curve was constructed using a set of furosemide standard solutions with 

concentrations of 0.1-4 mg.L-1. Three replicate injections were made for each standard solution. 

The regression equation and the value of the correlation coefficient were calculated using linear 

regression analysis. The sensitivity of the analytical method was estimated in terms of the limits 

of detection (LOD) and of quantification (LOQ). LOD and LOQ were defined based on signal-

to-noise ratios of 3:1 and 10:1, respectively. Moreover, for the assessment of the analytical 

method’s accuracy and precision (intra-day), standard solutions at seven different 

concentrations (from 0.25 mg.L-1 to 4 mg.L-1) were injected at three different times in the same 

day. The precision of the proposed method was obtained by calculating the relative standard 

deviation (RSD) values of the peak areas for the three different injections with acceptance 

criteria of not more than 2% (United States, 1996). The accuracy of the quantification method 

was assessed through the percentage ratio between the measured concentrations of the 

furosemide standards and their nominal concentrations. 

2.4. Procedure 

Different syringe filters were tested to study the FUR recovery percentage throughout the 

process. Nylon and PVDF (Polyvinylidene fluoride), both with 0.45 µm pore size as 

recommended for HPLC analysis, were selected. The filter size (13 mm) was chosen in 

accordance with the low sample volume required for further analysis. Through HPLC analysis, 

filter recovery capacity was tested for 2 mg.L-1 of FUR solution, filtering a volume of 2 mL. 

Additionally, the recovery capacity was further validated comparing a standard curve, between 

0.25 and 2 mg.L-1 of FUR, with and without filtration. 

For FUR degradation studies, an experiment over 8 days was performed under three 

different storage conditions. At room temperature (12-18˚C), three replicates of a FUR solution 

with approximately 2 mg.L-1 were exposed to daylight (L), and the other three were kept in the 

dark (D) to test photodegradation sensitivity. The effect of storage temperature was tested with 

another three replicates that were kept at 4˚C. Samples were taken from all the standard 

solutions after 0, 24, 48, 72 and 192 hours of exposure and analysed through HPLC. 

3. RESULTS AND DISCUSSION 

3.1. Furosemide quantification 

3.1.1. Furosemide recovery  

Figure 1 compares the extent of FUR retention by two different filters, Nylon and PVDF, 

for the same solution. Nylon filters presented 75% more FUR adsorption than PVDF filters. 
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Hence, the PVDF filter seems more efficient for FUR solution filtration. Several factors can 

affect adsorption onto membranes, from characteristics of the compounds to the properties of 

the filters. Both filters have hydrophilic membranes, the same pore size (0.45µm) and the same 

effective filter area (1.3 cm2). Nylon filters, compared with PVDF, bind proteins and are more 

suitable for filtering samples with a high pH. In turn, PVDF filters are highly inert and have 

low protein binding (GE Healthcare, 2018). Since the standard samples have a pH of 5.5±0.17, 

both filters were appropriate. Hence, the results can be an outcome of the inert feature of the 

PVDF filters. To further validate the PVDF filters’ suitability, a comparison of a standard curve 

with and without filtration was performed (see Figure 2). No significant losses were observed. 

Therefore, the PVDF filter was considered appropriate to carry on experiments with FUR. 

 
Figure 1. FUR retention (2 mg.L-1) in Nylon and PVDF filters. 

 
Figure 2. Standard curve of FUR for samples without filtration 

and filtered through PVDF filters. 

3.1.2. Method validation 

An optimal peak shape and retention time of FUR was obtained for the selected 

chromatographic conditions (Figure 3). The method employed also showed a linear pattern for 

the tested concentration range (0.1-4.0 mg.L-1) with a correlation r2=0.9999 (Figure 4).  Limit 

of quantification (LOQ) was 0.144 mg.L-1 and limit of detection (LOD) was 0.048 mg.L-1 

(Equations 1 and 2, respectively). The accuracy of the method was estimated to be within 93.7-

101.8%, whereas in regard to the intra-day precision, RSD of measurements were below 2%. 

Therefore, the method can be considered to provide a good sensitivity, precision and accuracy. 

𝐿𝑂𝑄 =  
10 x σ

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒
                 (1) 

𝐿𝑂𝐷 =  
3.3 x σ

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑣𝑒
              (2) 
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Figure 3. Chromatogram of FUR in ultrapure water matrix. 

 

Figure 4. Linearity of FUR in an ultrapure water matrix. 

3.2. Degradation studies 

Figure 5 shows FUR stability over 8 days under different storage conditions. The FUR 

solutions kept from light exposure maintained their concentration throughout the experiment. 

Storage temperature does not seem to affect FUR concentration. Moreover, since FUR 

quantification is performed at room temperature, FUR-solution storage should benefit if similar 

temperatures are maintained to avoid potential precipitation. Figure 5 shows that during the first 

24h of exposure there is a slight increase in concentration in 4D solutions.  The minor increase 

is due to the initial lower values of one of the replicates. Poor initial solubility of the replicate 

could explain the lower value at 0 hours of exposure, compared to the 24-hour sample.   

 

Figure 5. FUR conservation over 8 days for three 

different conditions: L – Light exposure at room 

temperature; D – Kept in the dark at room 

temperature; and, 4D – Kept in the dark at 4˚C. 

FUR's sensitivity to light is well-documented, and the appearance of photodegradation 

products as a result of the exposure to light is to be expected (Greca et al., 2004). In fact, Figure 

6a shows the presence of two new peaks (2 and 3) along with the peak of FUR (1).  Substance 

(3) appears in all samples after 24h and disappears before 48h of exposure; therefore, light 

exposure and temperature are not the key factors to explain this phenomenon. Moreover, 

substance (3) seems to suffer further degradation since it disappears after 48h.  
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In the first 72h of exposure, the decrease of FUR is followed by an increase of the 

concentration of substance (2). Afterwards, substance (2) decreases to concentrations below 

detection levels. Greca et al., (2004) tested the photodegradation of furosemide in different 

water matrices through a 150-W solar simulator over 36h. In all water matrices, including a 

simple distilled water medium, only one new photoproduct was found.  The same result 

occurred when the distilled water solution was exposed to natural solar radiation. Therefore, 

the main photoproduct mentioned above, substance (2), which is visible in the solution exposed 

to light, can be the same as the one found in the previously referred to work. FUR, in aqueous 

solutions exposed to UV light, hydrolyses into 2-amino-4-chloro-5 sulfamoylanthranilic acid 

(CSA) and furfuryl alcohol that will be further degraded into levulinic acid (Ruiz‐Angel et al., 

2006). Therefore, substance (2) could be the FUR photoproduct CSA, but further liquid 

chromatography mass spectrometry analysis should be undertaken for substance identification 

(Figure 7). 

 
Figure 6. Chromatogram of furosemide in ultrapure 

water under: a) light exposure/room temperature; b) 

darkness/room temperature; c) darkness/4˚C. Continue. 
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Figure 6. Continue. 
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Figure 6. Continue. 
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Figure 7. a) Furosemide photodegradation over eight days; b) First-order kinetic of 

furosemide photodegradation. 

4. CONCLUSIONS 

The developed method allows fast and accurate determination of FUR in water solution by 

HPLC-UV. In the 0.1-4 mg.L-1 concentration range, the quantification of FUR follows a linear 

regression. Due to its low solubility and sorption susceptibility, FUR standard solutions should 

be filtered through PVDF filters or others with a similar inert feature. Stability studies validated 

the well-known photo sensitivity characteristic of FUR. Total photodegradation of a FUR 

solution was achieved after 48h of exposure to natural light. Therefore, it is recommended that 

FUR standards solutions should be stored in the dark at room temperature to guarantee 

concentration conservation. The study emphasizes that when targeting FUR in low volume 

environmental samples, special attention should be given to the chosen filter, as well as to 

storage conditions to avoid underestimation errors. 
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