COMITÊ EDITORIAL

Editor
Getulio Teixeira Batista
Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), Brasil

Editores Associados

Amaury Paulo de Souza
Universidade Federal de Viçosa (UFV), Brasil

Antonio Evaldo Klar
Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, Brasil

Dar Roberts
Universidade de Stanford; BA pela Universidade da Califórnia, EUA

Hans Raj Gheyi
Universidade Federal de Campina Grande (UFCG), Brasil

Hélio Nóbile Diniz
Instituto Geológico, Secretaria do Meio Ambiente do Estado de São Paulo (IG/SMA), Brasil

João Vianei Soares
Instituto Nacional de Pesquisas Espaciais (INPE), Brasil

Editor da Seção Editorial
Nelson Wellauen Dias, PPGCA, UNITAU, Brasil

Editora de Texto
Maria de Jesus Ferreira Aires, GELP, UNITAU, Brasil

Editora de Referência
Liliane Castro, Biblioteca ECA/Civil, UNITAU, Brasil

Editor de Layout
Adam Querido Mazzei Ribeiro, LAGEO, UNITAU, Brasil

Suporte Técnico
Marcio Vinicius Gagliotti, LAGEO, UNITAU, Brasil.

Ficha catalográfica elaborada pelo
SIBi – Sistema Integrado de Bibliotecas / UNITAU

Quadrimestral
ISSN 1980-993X

CDD - 333.705
CDU - (03)556.18
ÍNDICE

CAPA

Resposta Hidrológica Média para o Período de 1970 a 2000

EDITORIAL

Editorial Ambiente e Água (doi:10.4136/ambi-agua.1) 3

Getulio Teixeira Batista

ARTIGOS

Variabilidad de la temperatura superficial del mar obtenida a partir de imágenes AVHRR y su relación con las pesquerías de langosta (Panulirus argus) en las aguas Cubanas (1997-2004) (doi:10.4136/ambi-agua.2) 6

Regla Duthit Somoza, Milton Kampel, Ronald Buss Souza, Susana Cobas

Mapping the Hydrologic Response of the Brazilian hydrologic regions and their variability associated with El Niño and La Niña (doi:10.4136/ambi-agua.3) 21

João Vianei Soares, Felix Carriello, Nelson Jesus Ferreira, Camilo Daleles Rennó

Near real time detection of deforestation in the Brazilian Amazon using MODIS imagery (doi:10.4136/ambi-agua.4) 37

Yosio E. Shimabukuro, Valdete Duarte, Liana O. Anderson, Dalton M. Valeriano, Egidio Arai, Ramon M. de Freitas, Bernardo F. T. Rudorff, Mauricio A. Moreira

Efeitos da irrigação e do nitrogênio na produtividade do trigo (doi:10.4136/ambi-agua.5) 48

Bernardo Friedrich Theodor Rudorff, Mauricio Alves Moreira, Marcelo dos Santos Targa, José Guilherme de Freitas

Caracterização climática e estudo de tendências nas séries temporais de temperatura do ar e precipitação em Taubaté (SP) (doi:10.4136/ambi-agua.6) 61

Marcelo Theophilo Folhes, Gilberto Fisch

Evolução espacial de áreas irrigadas com base em sensoriamento remoto o Médio Vale do Paraíba do Sul, Sudeste do Brasil (doi:10.4136/ambi-agua.7) 72

Nilton S. Paes Junior, Silvio J. C. Simões
Editorial of the First Edition of the “Ambiente e Água” Scientific Journal
(doi:10.4136/ambi-agua.1)

Getulio Teixeira Batista

Professor at the Master Degree Program in Environmental Sciences of the University of Taubaté.
Estrada Municipal Dr. José Luiz Cembranelli, 5.000; Bairro Itaim; 12.081-010 - Taubaté, SP
E-mail: ambi-agua@agro.unitau.br.

This release is the first edition of this new interdisciplinary scientific journal, named Ambiente e Água - An Interdisciplinary Journal of Applied Science, Ambi-Agua, in short. The journal was so named to characterize the emphasis in publishing scientific papers in the areas of Environmental Sciences and Water Resources, once these scientific areas typically integrate systems and processes of the ecosphere (biosphere and atmosphere). Specifically, this Journal will publish scientific findings in the area of Hydrology, Hydrogeology, Environmental Engineering and Sanitation, Forest Engineering and Forest Resources, Ecology, Aquaculture, Oceanology and Fishing Resources, Agronomy, Agrometeorology and Agricultural Engineering, Global Change, Fishing Engineering and Zootechnology, Geography, Geology, Environmental Science, Environmental Legislation and Pollution, among others. As well as, papers in the areas of Remote Sensing, Geotecnologies and Spatial Analysis concerned with the study of water, environment and public health.

This Journal is being edited by the Institute of Environmental Research in Hydrographic Basins (IPABHi) and by the Graduate Program in Environmental Sciences of the Research and Graduate School of the University of Taubaté, initially with three issues annually. The Journal is published on-line, using the SEER System, an integrated digital publishing software package distributed by the Brazilian Institute for Science and Technology Information (IBICT) (http://www.ibict.br/secao.php?cat=SEER), that was developed based on the "Public Knowledge Project (Open Journal Systems - http://pkp.sfu.ca/ojs/)" of the British Columbia University that has been built upon the experience of other systems developed for preservation of data (Rosenthal et al., 2005). This system will allow great visibility, powered by the OAI-PMH Protocol and several tools for digital data preservation. All editions will be freely available to the community.

Even though this is an electronic publication, articles will be published in typical printed publication format, that is, with numbered pages to guarantee the appropriate credit to the authors. The papers are published in the "Portable Document Format" (pdf) format, that guarantees the visualization of the original layout of the article, as it had been printed and with restriction for text copying. Printing and download of the articles in the same digital format (pdf) for subsequent reading. To increase the visibility, each issue will be available as a single file. Thus Librarians could print the entire edition, for consultation in their libraries. In the future, pending upon financial support, the Ambi-Agua Journal will be printed in paper to increase the visibility of the published articles.

THE MISSION

The mission of Ambi-Agua is to publish inedited scientific articles that contribute to knowledge advancement in the areas of interest of the Journal, with asserted quality. The visibility of the papers will be emphasized by the compatibility with the "Open Archives Initiative Protocol for Metadata Harvesting" (OAI-PMH) and by constant search for
indexation by relevant scientific citation indices. Quality was planned since the conception of this journal. The first initiative of the Editorial Board was to invite scientists with high scientific productivity as Ad Hoc referees of the articles. The community's response was very positive. By the time of this release over 200 scientists of high scientific stand, voluntarily registered as Ad Hoc referees. The Committee Board will do its best to have this journal, in a relatively short term, ranked in a good position on the CAPES classification system that asserts the quality of scientific journals.

EDITORIAL FEATURES

The main decision of the Ambi-Agua Editorial Committee was to use an integrated management system for electronic publishing (SEER) not only to facilitate management tasks, to allow authors follow up each step of the evaluation process of his/her submitted article, and to expedite and reduce communication costs. Another benefit comes from its integration with the OAI-PMH that provides independent interoperability of the application based on the metadata collection. That protocol involves two classes of participants: Data Providers, the ones that expose the metadata (as done by the Ambi-Agua administrators) and the Service Providers that use the collection of the metadata to add services that enlarge the visibility of the articles using unique identifiers.

Since the release of this first edition, Ambi-Agua is operating normally by the SEER system, accessible at the address: www.agro.unitau.br/ambi-agua. To access articles for reading purpose just click "CURRENT" on the menu, to have access to the published articles. For article submission the user has to register in the system as an author by just filling in his/her data in the "REGISTER" tab.

The journal layout and articles' format follows the principle of simplicity: a single column, a single margin (2,5 cm in all sides), articles with flexible size and traditional structure of presentation of a scientific article. The norms for citations follow the recommendations of ABNT-NBR 10520 and for the references, the recommendations of ABNT-NBR 6023. Adopting these norms was a difficult decision of the Editorial Committee considering the international scope of this journal, however, this is a mandatory condition for acquiring external funds from Brazilian funding agencies. To give some uniqueness to Ambi-Agua Journal, those norms were slightly adapted (Beraldo; Pereira, 2001) preserving, however, all of the necessary requirements to characterize the cited publication. To help authors that are unfamiliar with some of the specificities of those norms, the journal has the support of a Librarian of Reference that revises each article before publication. The articles, besides undergoing through the evaluation process by Ad Hoc peer reviewers and by the Editorial Committee, are reviewed for linguistic quality improvement, preserving, however, the style of the authors' expression.

The journal has established a strategy to guarantee originality, access and preservation of the articles. This is achieved by using the SEER system that incorporates the LOCKSS system (Lots of Copy Keep Stuff Safe™ - http://www.lockss.org/). LOCKSS creates a system of distributed files among participant libraries. It allows them to create permanent files of the journal issues for preservation and restoration. In the future, depending upon financial support, Ambi-Agua will implement the "Digital Object Identifier" (DOI), developed by the DOI Foundation (www.doi.org) that connects the reader with the publisher and helps on the copyright management, what certainly will increase the accessibility of the published articles.
FINAL REMARKS

The release of *Ambiente e Água* is intended to be a service to the scientific community in the areas of water resources and environmental sciences from Brazil and worldwide. Especially, it is expected that *Ambi-Agua* contributes to the international scientific publication and to the global scientific integration. This Journal publishes original articles in Portuguese, English and Spanish languages. In this first edition, articles were published in all three languages from different areas of the Americas (Central and South). These articles deal with the relationships between sea surface temperature and lobster (*Panulirus argus*) catching; the variability of hydrologic response associated to episodic events such as El Niño and La Niña; detection in almost real time of deforestation in Amazonia; the combined effect of irrigation and nitrogen fertilization on wheat yield; climatic characterization and temporal trends of air temperature and precipitation; and, the spatial increase in irrigated areas in the mid Vale do Paraíba do Sul region in southeast Brazil, which characterizes the interdisciplinary nature of this Journal.

REFERENCES

Variabilidad de la temperatura superficial del mar obtenida a partir de imágenes AVHRR y su relación con las pesquerías de langosta (Panulirus argus) en las aguas Cubanas (1997-2004)

(doi:10.4136/ambi-agua.2)

Regla Duthit Somoza1, 2; Milton Kampel2; Ronald Buss Souza2; Susana Cobas1

1Centro de Investigaciones Pesqueras - 5ta Ave, 246, Barlovento, Sta. Fe, Playa, Ciudad Habana, Cuba
E-mail: duthit@gmail.com; susana@cip.telemar.cu

2Instituto Nacional de Pesquisas Espaciais - INPE, Caixa Postal 515, São José dos Campos-SP, Brasil
E-mail: {milton, ronald}@dsr.inpe.br

RESUMEN
Se obtiene la variabilidad espacial y temporal de la temperatura superficial del mar (TSM) para las aguas de la plataforma cubana, así como la relación de estas con las capturas de langostas, en el periodo comprendido entre Enero/1997-Diciembre/2004. Los datos de esta variable ambiental son obtenidos del sensor “Advanced Very High Resolution Radiometer” (AVHRR). La periodicidad de las imágenes y de los datos de captura por zonas de pesca es mensual. Las aguas oceánicas y de la plataforma tienen un comportamiento estacional para la TSM, alcanzando las máximas en Agosto (29,5°C) y las mínimas en Febrero (26°C). Los valores extremos registrados se datan en Agosto del 1998 con anomalías de 1,9°C y de -0,9°C en Febrero del 2001. Durante el periodo invernal (Nov-Abr) es posible encontrar un patrón general de circulación de las aguas para el área mediante la observación de las imágenes; en verano (May-Oct) no se observa. Se obtiene una baja correlación entre las anomalías de TSM y las capturas de langostas por zonas de pesca. Los mejores coeficientes de correlación (0,48) se hallaron para la zona occidental de la isla, con 4 años de desfase.

Palabras claves: temperatura superficial del mar; AVHRR; langostas; anomalías.
1. INTRODUCCIÓN

El alcance de las ciencias pesqueras y los componentes relacionados con la biología marina, ha sido definido tradicionalmente por la escala de las pesquerías estudiadas, la cual puede oscilar desde unos pocos kilómetros cuadrados (ejemplo: en el caso de las pesquerías de invertebrados) a cientos de kilómetros cuadrados en el caso de las pesquerías de altura. Por ello se plantea, que el manejo de las pesquerías debe documentarse con mapas de los “ecosistemas bases” que incluya en esencia sus procesos ecológicos relevantes (Pauly et al., 2001).

Las pesquerías de langosta espinosa (*Panulirus argus*) son realizadas en los mares poco profundos de la plataforma cubana los que constituyen el hábitat natural de esta especie, que por su elevado valor económico es reconocido como el principal recurso pesquero del país. La relación de variables abióticas o ambientales con la biología y pesquería de esta especie es un asunto abordado por varios autores desde el siglo pasado, al respecto Gómez (1980) establece una relación entre la temperatura del aire en Batabanó y el inicio de la maduración de las hembras en la zona, existiendo la posibilidad de predecir la fecha de ocurrencia del pico de maduración de langosta en esta zona. Otro aspecto es el referido a la migraciones masivas de langosta en el período octubre –diciembre (migración otoñal), donde un conjunto de autores han dedicado sus estudios. Entre ellos podemos mencionar Baisre et al. (1984), Hernández (1988), García et al., (1991), Hernández et al. (1995), Hernández y Puga (1995), los cuales realizaron un análisis considerando las posibles causas de este comportamiento, relacionándolo con estímulos de origen hidrodinámico como posible causas, entre los que se citan la entrada al país de los llamados frentes fríos y los ciclones tropicales. También, Hernandez (2002), estudió teleconexiones de fenómenos que tienen impacto a escala Global como el ENOS (El Niño Oscilación- Sur) con las variabilidades de la temperatura en las aguas cubanas así como la influencia de las anomalías de TSM sobre el desove y reclutamiento de la langosta espinosa *Panulirus argus* en la plataforma cubana, obteniendo todas las correlaciones con alto nivel de significación estadística pero con meses de desfase para el Golfo de Batabanó.

Los patrones espaciales y temporales de variación de la temperatura superficial del mar (TSM) juegan un papel fundamental en la determinación de las condiciones para la supervivencia de los organismos que habitan en las aguas poco profundas, pues reflejan los rangos de ocurrencia de los procesos que allí tienen lugar. El estudio de estas propiedades básicas del océano podría ayudarnos a un mejor entendimiento de los ecosistemas oceánicos y costeros, así como de los procesos bióticos y abióticos que ocurren en estas aguas. Hoy en día, la adquisición de datos oceanográficos convencionales sobre grandes áreas y por largos períodos de tiempo aun es extremadamente difícil y cara, en comparación a los datos de satélite. Los datos obtenidos por sensores orbitales con visión sinóptica convencional y con grandes resoluciones espaciales pueden proveer series temporales de datos de alta frecuencia por largos periodos de tiempo (Robinson, 1985, 2004).

El desarrollo del sensoramiento remoto para aplicaciones pesqueras impone el uso de esta tecnología para la obtención de datos ambientales que pudieran ser relacionados con la explotación de la langosta espinosa en aguas cubanas, en el área de estudio seleccionada, no existen antecedentes del uso de esta importante herramienta en el análisis de las interacciones de variables ambientales con las pesquerías.

Según Souza (2005), las ventajas de utilizar datos de sensoramiento remoto para la obtención de variables ambientales está, en que la elevada sensibilidad de los sensores actualmente en operación permite captar pequeñas variaciones en áreas considerablemente mayores, comparada con los resultados alcanzados por estudios realizados a bordo de
embarcaciones. Teniendo en cuenta la disponibilidad de las imágenes del sensor AVHRR (Advanced Very High Resolution Radiometer) de la serie NOAA (Nacional Oceanographic and Atmospheric Administration) de los Estados Unidos para TSM (Temperatura Superficial del Mar), así como el cúmulo de datos que de estas puede ser obtenido nos planteamos el objetivo siguiente:

Describir la variabilidad de la TSM obtenida a partir del sensor AVHRR en aguas oceánicas adyacentes a la plataforma cubana y la relación de esta variable ambiental con las capturas de langostas en zonas de pesca; período comprendido entre enero de 1997 y diciembre del 2004.

2. MATERIALES Y MÉTODOS

2.1. Área de estudio

La selección del área de estudio (Figura 1) se realizó teniendo en cuenta el esquema de distribución espacial de las langostas *P. argus* durante las distintas fases de su ciclo de vida de Cruz et al. (1990), así como lo planteado por la Comisión de Pesca para el Atlántico Centro Occidental (COPACO), referente a que “los recursos de la langosta espinosa del Caribe en la región podrían estar interconectados a través del régimen de circulación de las aguas teniendo en cuenta su fase oceánica dentro del ciclo de vida” (FAO, 2003). Esta zona de estudio permite una visión general de lo que ocurre con las variables ambientales donde se desarrolla esta especie, un poco más allá de las aguas de la plataforma donde se realizan sus pesquerías.

![Figura 1](attachment:imagen.png)

Figura 1 Área de estudio y Zonas de Pesca; Zona A: Golfo Ana María Guacanayabo (18328,8 km²); Zona B: Golfo de Batabanó (21851,2 km²); Zona C: Archipiélago de las Coloradas (3432,5 km²); Zona D: Archipiélago Sabana-Camagüey (10739,8 km²) Zonas A1, B1, C1 y D1 corresponden a las aguas adyacentes a estas regiones.

Se encuentra situada en la zona climática tropical de la Región del Caribe, sub-región 1; entre los 18-25 °N y los 87-73°W. Recibe una insolación anual de más de 25000 horas de luz.
en el año, la presión atmosférica es de 1017 hPa. La temperatura media del aire en el invierno entre 20° y 22°C, mientras en verano es de 26°C y más. El régimen de lluvia (mayo-octubre) es de más de 1200 mm y en período de seca (noviembre-abril) oscila entre 200 y 300 mm (IGACC; ICGC, 1989).

En aguas de la plataforma insular la batimetría es característica de aguas poco profundas que tienen una media para la región occidental y nor-oriental (Figura. 1 Zonas B, C, D) de 7 metros de profundidad, aproximadamente y para la región sur oriental las profundidades son mayores oscilando de 15-25 metros. Por otro lado, las zonas donde la línea de costa no es bañada por las aguas someras de la plataforma insular las profundidades aumentan bruscamente a pocos kilómetros de la costa, por lo que para las Zonas A1, B1, C1 y D1 las profundidades oscilan entre 500-5500m.

2.2. Datos de las pesquerías de langosta en aguas de la plataforma cubana

Se obtienen a través de la Empresa PESCACUBA, perteneciente al Ministerio de la Industria Pesquera cubana y se constituyen de las series de captura mensual nacional por zonas de pesca, para el período 1997-2004. Las zonas de pesca se obtienen del Atlas Biológico-Pesquero de Langosta (Cruz et al., 1990). Son calculadas las anomalías de la serie a partir de la media mensual de cada año y media mensual climatológica.

2.3. Datos de TSM

Son utilizadas las imágenes de TSM, obtenidas por el sensor AVHRR/ NOAA. Estas se logran a través de la ULR: http://podaac.jpl.nasa.gov/products/product216.html.

El producto utilizado es: “AVHRR Oceans Pathfinder Global 4 km equal-angle all SST v5 (NOAA, NASA)”. La disponibilidad de estos datos es en formato HDF en la escala global, con nivel 3 de procesamiento. Las resoluciones espaciales y temporales son de 4x4 km y mensual respectivamente. Para el período de estudio entre 1997-2004 fueron analizadas 96 imágenes mensuales.

Para estimar la TSM a partir del producto “Pathfinder” del sensor AVHRR es usado el algoritmo de corrección no-linear versión 4,1, aprobado para el tratamiento de datos históricos AVHRR, porque tiene a disminuir ampliamente todas las condiciones atmosféricas que interfieren en la obtención de datos. Referencias detalladas sobre el algoritmo usado para estimar la TSM para el producto “pathfinder” v5 debe consultarse a Vázquez et al. (1998).

2.4. Procesamiento de las imágenes

Luego de tener las imágenes globales de las medias mensuales correspondientes a la serie temporal 1997-2004 y la climatología de la TSM en un período que abarca los años 1985-2004, estas fueron cortadas para el área de estudio usando el software MATLAB®. Las imágenes obtenidas tienen 755 líneas y 386 columnas, con los datos de TSM por píxel. Cada imagen fue guardada con extensión ASCII para su posterior manipulación en ENVI 4.2®, donde fueron geo-procesadas.

En las imágenes originales el valor de los píxeles que corresponden a la tierra muestra un valor de -3°C. Así fue posible descartar estos, pero aún en la obtención de los valores extremos de las imágenes se observaron valores mínimos absurdos muy lejanos a los registrados en la zona de estudio, esto fue debido a la presencia de píxeles contaminados por nubes y sombras. Conociendo que los valores de exactitud nominal del producto pathfinder-TSM varía en el rango contenido entre 0,3-1°C (Brown et al., 1985; Minnet, 1991), fueron tomados en cuenta los valores históricos registrados para el área y se realiza una filtración de
estos píxeles, para que no sean tomados en cuenta en la obtención de las estadísticas básicas, por tanto se crea una mascara en IDL® para valores inferiores a 20°C.

Teniendo en cuenta el comportamiento de la TSM para la climatología de la zona se determinan las regiones de interés para su estudio detallado, las cuales se ubican como aparece en la Figura 1. Estas regiones delimitan las zonas de pesca de la langosta Zona A: Golfo Ana María Guacanayabo (18328,8 km²); Zona B: Golfo de Batabanó (21851,2 km²); Zona C: Archipiélago de las Coloradas (3432,5 km²); Zona D: Archipiélago Sabana-Camagüey (10739,8 km²); así como las aguas oceánicas adyacentes a estas teniendo en cuenta que para el ciclo de vida de la especie en el espacio, ella desarrolla toda su fase larval en estas aguas oceánicas. Para cada una de estas áreas son determinados los valores extremos con las estadísticas básicas.

2.5. Correlaciones con las pesquerías
Fueron realizadas a partir de las matrices conformadas por las anomalías de las medias mensuales de la ATSM por Zona de pesca y las anomalías de las capturas para la zona de pesca adyacente. Fueron calculadas para toda la serie y con desfase de 1 a 5 años. Los meses de veda (Marzo-Mayo) se eliminaron de las matrices, pues durante este período no existe variabilidad natural de la pesquería.

3. RESULTADOS Y DISCUSIÓN

3.1. Climatología TSM
Las imágenes de climatología (Figura 2) muestran estacionalidad bien definida por dos patrones de comportamiento de la TSM, para el área. De esta forma se pueden agrupar seis meses de invierno (Noviembre-Abril) y el resto de verano (Mayo-Octubre). Durante el verano no se define el régimen de circulación de las aguas descrito por Gyory et al. (2004) para el área, teniendo en cuenta los valores de TSM, mientras que para el período invernal puede apreciarse la dinámica de las aguas a través de los frentes térmicos formados en los límites de la circulación.

En las cercanías de América del Sur la TSM aumenta de sur a norte y de este a oeste, en concordancia con el movimiento de la circulación de la Corriente del Caribe. Las temperaturas más altas del área son registradas de junio-octubre en el área central del Caribe, hacia la costa sur-occidental de Cuba. Para el Golfo de México se tiene que durante el verano es observada alta homogeneidad en los valores más de 28°C, mientras que durante el invierno se observa frente térmico provocado por la Corriente del Lazo “Loop current”, que se localiza en esta área. Por otro lado tenemos que la corriente de Yucatán que se localiza al norte de la península con el mismo nombre no se destaca a través de la TSM para el área estudiada durante ninguna época del año. Para las aguas al norte de Cuba se aprecia una
lengua de agua caliente durante el invierno, la cual se extiende por el este de la península de la Florida hacia el norte, conformando la localización de esta corriente. Este patrón de circulación de las aguas promueve una salida sin retorno de las larvas siguiendo el régimen de la corriente de la Florida como plantea Alfonso et al. (1999). Por otro lado no es posible observar en ninguna época del año, a partir de las imágenes climatológicas, los giros existentes al sur de la plataforma cubana, descritos en la literatura por García et al. (1991).

3.2. Variabilidad de la TSM y las capturas para las zonas de pesca

Como se aprecia en la Figura 3 al obtener las estadísticas básicas de la TSM para estas zonas de pesca se observa una marcada estacionalidad, tanto en aguas de la plataforma como en las océanicas adyacentes.

También se aprecia un período de aguas más frías entre los meses de Noviembre-Abril con mínimos medios de 26° C en el mes de enero. Valores inferiores para las aguas de la plataforma (25,2° C). Por otro lado se observa una elevación de la TSM entre los meses de Mayo-Octubre, con una media de máximas (29,5° C) registradas para el mes de agosto también con valores extremos (31,1° C) muy marcados para la plataforma. En las zonas al sur de la isla podemos observar un comportamiento planteado por Warrior et al. (2002), el cual describe que las regiones de la plataforma se enfrian más rápidamente que las aguas océanicas, por la acción del calor sensible y las perdidas por evaporación, debido a la rápida mixtura entre las aguas de superficie y fondo en las bajas profundidades, enfiando toda la columna de agua, así como se calientan con mayor rapidez en el verano. En la Figura 3 se determina un mes de inflexión para este comportamiento en primavera y otro en otoño, para las Zonas A- A1 y B-B1 en los meses de Abril y Octubre. En cuanto a la estacionalidad anual de las capturas (Figura 4) podemos apreciar que existen dos máximos bien determinados, uno en la época de levante de veda (Junio-Septiembre) en el mes de Junio y otro menor en octubre.

Zona A

<table>
<thead>
<tr>
<th>Meses</th>
<th>TSM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
</tr>
<tr>
<td>Abr</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
</tr>
<tr>
<td>Ago</td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
</tr>
<tr>
<td>Dic</td>
<td></td>
</tr>
</tbody>
</table>

Zona B

<table>
<thead>
<tr>
<th>Meses</th>
<th>TSM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
</tr>
<tr>
<td>Abr</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
</tr>
<tr>
<td>Ago</td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
</tr>
<tr>
<td>Dic</td>
<td></td>
</tr>
</tbody>
</table>

Zona C

<table>
<thead>
<tr>
<th>Meses</th>
<th>TSM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
</tr>
<tr>
<td>Abr</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
</tr>
<tr>
<td>Ago</td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
</tr>
<tr>
<td>Dic</td>
<td></td>
</tr>
</tbody>
</table>

Zona D

<table>
<thead>
<tr>
<th>Meses</th>
<th>TSM (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene</td>
<td></td>
</tr>
<tr>
<td>Feb</td>
<td></td>
</tr>
<tr>
<td>Mar</td>
<td></td>
</tr>
<tr>
<td>Abr</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
</tr>
<tr>
<td>Jun</td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
</tr>
<tr>
<td>Ago</td>
<td></td>
</tr>
<tr>
<td>Sep</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
</tr>
<tr>
<td>Nov</td>
<td></td>
</tr>
<tr>
<td>Dic</td>
<td></td>
</tr>
</tbody>
</table>

Figura 3. Estacionalidad anual de la TSM por zonas de pesca. Las zetas demarcan los meses de inflexión de la TSM entre plataforma y océano.

Figura 4. Estacionalidad de las capturas por zonas de pesca. (Zona A: Golfo Ana María Guacanayabo; Zona B: Golfo de Batabanó; Zona C: Archipiélago de las Coloradas; Zona D: Archipiélago Sabana-Camagüey).

Por otro lado la Figura 5 muestra que las mayores capturas promedios se obtienen en la zona Sur occidental de la isla (Zona B: 21851,2 km²) donde existe un mayor área de pesca,
varios autores denominaron esta zona como la de mayor productividad del país debido a su alta disponibilidad de alimentos y refugios así como por sus condiciones ambientales Cruz et al.; (1990, 1995), Baisre y Cruz (1994), Baisre et al. (1984) y Baisre (2000) entre otros. Mientras que los menores valores se registran para la zona Nor-occidental (Zona C: 3432,5 km²), que tiene menor extensión. Baisre y Cruz (1994) también plantearon que esta distribución de las capturas se relaciona con la extensión de las zonas de pesca, las profundidades promedios, los tipos de artes de pesca utilizados, la disponibilidad de hábitat y alimento.

3.3. Variabilidad de la ATSM y las capturas para las zonas de pesca

Para toda el área existe un patrón similar de calentamiento durante el verano y enfriamiento durante el periodo invernal (Figura 5). En el Sur de la isla, las aguas de la plataforma son más cálidas que las oceánicas durante el verano y más frías durante el invierno, en el Norte se observan ligeramente más cálidas las aguas de la plataforma respecto a las oceánicas adyacentes para cualquier época del año. Este patrón de comportamiento podría estar relacionado con las profundidades medias de estas masas de agua que para la plataforma podría considerarse como razas con valores de 7 m para las zonas B, C y D y de 15 m para la A, así como con la extensión de la zona de la plataforma que es significativo con el consecuente aporte del escurrimiento terrígeno.

Las aguas ligeramente más cálidas que se observan para la plataforma en la zona D podrían estar relacionadas con la dinámica entre plataforma y océano, ya que el Norte de la Isla tiene menos comunicación entre estas aguas y según lo descrito por Perez-Santos (2006) existe gran número de islotes y presencia de bahías semi-cerradas que limitan el intercambio. La TSM en las aguas adyacentes a la plataforma para el sur de la isla es más alta que al norte tanto en invierno como en verano, siendo notablemente más calida para la zona sur occidental del país (Zona B1). (Cerdeira-Estrada et al., 2005).

De manera general las anomalías para el área de estudio muestran variaciones, máximas positivas de la TSM en los meses de agosto-septiembre de estos años y negativas para los meses de enero-febrero, respecto a la media climatológica de la TSM (Figura 6). Tienen un
comportamiento similar para todas las regiones tanto de la plataforma como de las aguas adyacentes con un coeficiente de correlación de 0,9 entre estas masas de agua. Las mínimas ATSM se observaron en el invierno del 2001 (mes de Febrero, -0,9 ° C), mientras que las máximas se registran en el verano del 1998 (mes de Agosto, 1,9 ° C).

Este comportamiento para las anomalías de TSM justamente describen lo planteado por Hernández (2002); quien apunta que para los últimos eventos ENOS las altas temperaturas del mar en el Pacífico ecuatorial se reflejaron también en aguas de Cuba, pero con menor intensidad y se correlacionaron significativamente con la región de el Niño 3, que se localiza en el pacífico ecuatorial, con 5-6 meses de desfase para el Golfo de Batabanó. En la Tabla 1, se observa que podría extrapolarse lo planteado por este autor en un área específica de la plataforma al comportamiento de las ATSM en las áreas de pesca restantes debido al alto coeficiente de correlación calculado entre ellas, teniendo en cuenta al realizar este raciocinio que la Zona C es la que menos se correlaciona con el Golfo de Batabanó.

<table>
<thead>
<tr>
<th>Coeficiente de Correlación</th>
<th>Zona A</th>
<th>Zona B</th>
<th>Zona C</th>
<th>Zona D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona A</td>
<td>1</td>
<td>0.80</td>
<td>0.64</td>
<td>0.87</td>
</tr>
<tr>
<td>Zona B</td>
<td>1</td>
<td>0.89</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>Zona C</td>
<td>1</td>
<td>1</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Zona D</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

La Figura 6 muestra las anomalías de las pesquerías de langosta para las cuatro zonas de pesca. Las anomalías máximas están asociadas al levante de veda en el mes de Junio como se describe anteriormente para la estacionalidad, así como se localizan algunos asociados a la temporada de recalo (octubre-febrero).

A nivel nacional se observa una tendencia al decrecimiento de las capturas que es el reflejo de condiciones hidroclimáticas que pueden limitar el reclutamiento y afectar áreas de cría y el no cumplimiento cabal de regulaciones pesqueras o una veda insuficiente Puga

(2005). Particularizando por zonas de pesca se observa que las amplitudes varían entre -1,5 y 2 toneladas. Siendo encontrados picos positivos de capturas en todas las zonas en junio de los años 2002 y 2004, con máximos para el Golfo de Batabanó, que fueron explicados por Piñeiro (2004) y Puga (2005), como una respuesta de las capturas al cumplimiento de las medidas regulatorias, así como por las buenas condiciones ambientales y el paso de huracanes de alta intensidad por la zona.

3.4. Relaciones de la ATSM con las capturas de langosta

Teniendo en cuenta que las capturas de langosta en Cuba cuentan con un período de veda, solo son correlacionados los meses donde se desarrollan las operaciones pesqueras plenamente o sea, desde el levante de veda en Junio hasta el cierre de las pesquerías en Febrero. Las correlaciones de las ATSM con los registros mensuales de capturas por área de pesca se realizan con el mismo año, el año siguiente y hasta un desfase de 5 años teniendo en cuenta las posibles edades de los animales.

Fry (1971) planteó, que la temperatura es un factor decisivo para el crecimiento de la langosta espinosa porque controla la tasa metabólica, también en Gomes (1980) se logra una predicción del pico de maduración de las langostas en el Golfo de Batabanó mediante el establecimiento de una relación entre estas y la temperatura del aire. Para esta misma área Hernández (2002) determina que existe correlación de las ATSM con las capturas de langosta con dos años de desfase y siendo más significativas para el mes de diciembre con un valor de 0,49.

Especificando por zonas de pesca para el área de estudio seleccionada la Figura 7 muestra que para la zona A existe mayor correlación en los meses de noviembre (0,97) y diciembre (0,94) a los 4 y 5 años de desfase respectivamente, las menores correlaciones (-0,07) se observan en media (Figura 8) para 1 año de desfase y las máximas para tres años (0,28), sin embargo valor extremo de la mínima se registro en el mes de octubre (-0,83) con 5 años de desfase. En la zona B se obtienen valores de correlación variables a lo largo del año (Figura 7) pero se definen máximos en noviembre (0,90) y febrero (0,80) con 4 años de

desfase, también es con este desfase (Figura 8) que se obtienen las máximas correlaciones con valores de 0,48 en medias anuales y los mínimos un año de desfase.

La zona C presentó un comportamiento de máximas (Figura 7) desde septiembre hasta diciembre (0,52; 0,83; 0,88; 0,95 respectivamente) a los 4 años de desfase, lógicamente es a los 4 años donde existe mayor correlación para esta área (Figura 8), mientras que fueron observados picos en Julio (0,96) y Enero (0,98) con 5 años de desfase. En cuanto a los mínimos el valor extremo se registró para febrero (-0,93) con 5 años de desfase mientras que como promedio es a los 2 años de desfase donde es inferior la media (0,21). La zona D es la que presenta menores coeficientes de correlación de las ATSM con las capturas de langosta (Figura 8) en el área, siendo observados picos de máxima (Figura 7) en Julio (0,96) y Noviembre (0,88) a los 4 años de desfase, por otro lado se observan otros dos picos en Diciembre y Febrero a los 5 años, siendo en este tiempo de desfase donde paradójicamente también se registra el valor extremo mínimo en Agosto (-0,99).

![Figura 8. Coeficientes de correlación entre las ATSM y las anomalías de las capturas de langosta para las zonas de pesca. Desfasado en el tiempo de 0-5 años.](image)

Puga (2005) esboza que la edad promedio de los animales capturados por zona de pesca varía entre 2,5 - 7 años, en dependencia de la profundidad de la zona, siendo capturados los de menor edad en la zona D y los mayores en la zona A. Este planteamiento y los coeficientes de correlación obtenidos conllevan al razonamiento que las ATSM dentro del ciclo de vida de la langosta estarían más relacionadas con la fase larval que se desarrolla en aguas oceánicas, pues en Alfonso et al. (1999) se destacan dos elementos los gradientes de temperatura superficial y profunda, los cuales son los factores de mayor peso en la dinámica de las larvas. Al respecto, señala una limitación en la distribución de las larvas de *Panulirus* en la columna de agua relacionada con la profundidad de la termoclina y la restricción del movimiento de las larvas por sobre la isoterma de 26°C para las aguas cubanas.

Las mayores correlaciones se registraron para la zona occidental del país, de forma espacial puede observarse a través de las imágenes de ATSM (Figura 9) algunas variabilidades de poca amplitud siempre positivas en las temperaturas de aguas al sur-oeste (Zona B1) de la isla que podrían estar asociadas al patrón circular de movimiento de las aguas descrito por García et al. (1991). A estos giros se les atribuye un alto por ciento de retención de las larvas producidas en el Sur de Cuba, conociendo que estas filosomas poseen una distribución típicamente oceánica encontrándose siempre en aguas fuera de la plataforma submarina. Al momento de nacer, las larvas son movidas hacia fuera por las corrientes de cascada que se producen en el borde del talud de la plataforma submarina. Este movimiento de salidas de larvas se ocasiona principalmente por efecto de la turbulencia del agua y gracias
a su capacidad para realizar migraciones verticales diarias. Una vez que se ha completado el ciclo larval, los puerulos regresan auxiliados por el denominado transporte Ekman en dirección a la costa (Baisre et al., 1984).

Mientras que al norte del occidente (Zona C1) se observa durante el verano una ruptura de la corriente de lazo “Loop” descrita por Gyory et al. (2004) y en el invierno el frente térmico que esta provoca, pues según Souza (2005) grandes concentraciones de individuos de determinadas especies han sido encontrados a lo largo de frentes termales localizados, principalmente, próximos a vórtices y zonas de surgencias. Las condiciones favorables para el traslado y enrampe de larvas al sur-oeste de Cuba, no ocurre tan exitosamente para el Norte de Cuba, ya que las pocas amplitudes de las ATSM (Figura 9) y el esquema general de circulación de las aguas de Cuba muestran como la corriente de Lazo aglomera gran parte del volumen de agua que atraviesa el estrecho de Yucatán como se describe en García et al. (1991), la contracorriente cubana regresa sus aguas hacia la zona Sur de Pinar del Río, lo que podría incidir en gran proporción al regreso de las larvas de estadios finales hacia la plataforma. Por otro lado Alfonso et al. (1999) plantea que el sistema de vientos influye en que gran parte de las larvas al noreste de la isla (Zona D) se dispersen y continúen su curso hacia el norte con la corriente de la Florida, y se pierdan o se asienten en otras plataformas, lejos de las nuestras.

Figura 9. Imágenes AVHRR y las anomalías TSM, representativas de los máximos extremos registrados, positivos para el verano del 1998 mes de agosto, (izquierda); negativos para el invierno del 2001 mes de febrero (derecha).
4. CONCLUSIONES

Se determinó una estacionalidad anual bien definida por dos patrones de la TSM, para el área, en el periodo invernal (Noviembre-Abril) puede apreciarse el dinamismo de las aguas a través de los frentes térmicos formados en los límites de la circulación, mientras que durante el verano (Mayo-Octubre) no se define.

Las ATSM, tienen un comportamiento similar para todas las regiones tanto de la plataforma como en las aguas adyacentes con un coeficiente de correlación de 0,98 entre estas masas de agua y los valores extremos máximos positivos para el año 1998; los máximos negativos se registran en el 2001.

Se determina muy baja correlación entre las ATSM y las capturas registradas para cada zona de pesca, variando desde -0,1 a 0,48; obteniéndose las máximas correlaciones (0,48) con un desfase de 4 años para la región occidental del país.

5. RECOMENDACIONES

Las anomalías de Temperatura Superficial del mar como variable aislada no deben explicar las fluctuaciones de la pesquería, sino que debe integrarse con los otros elementos bióticos y abióticos que actúan sobre los ecosistemas donde se desarrollan tanto las pesquerías como las fases del ciclo de vida de la especie. Por tanto, investigaciones futuras deben relacionar otras variables ambientales obtenidas a partir de sensores orbitales (ejemplo: clorofila, turbidez, vientos, coeficiente de atenuación de la luz, etc.) con las pesquerías de langosta en Cuba considerando datos espaciales y temporales de esfuerzo pesquero.

6. REFERENCIAS

Mapping the Hydrologic Response of the Brazilian hydrologic regions and their variability associated with El Niño and La Niña

(doi:10.4136/ambi-agua.3)

João Vianei Soares; Felix Carriello; Nelson Jesus Ferreira; Camilo Daleles Rennó

Instituto Nacional de Pesquisas Espaciais

E-mail: vianei@dsr.inpe.br, {felix, camilo}@dpi.inpe.br, nelson@cptec.inpe.br

ABSTRACT

Brazil has a wide-ranging network of rivers flowing northeast, east, north or southward. The water running off these basins may vary a great deal with climate and spatial distribution of rainfall rates. This paper analyzes the Hydrological Response (HR) of the eight major Brazilian river basins and sub-basins for a period matching 30 years of data, from 1970 to 2000. HR refers to river flow normalized by rainfall over the basin. The atmospheric forcing strongly modulates the HR at synoptic scales. At local scales, geology and land use also play an important role. The average spatial HR reached values as high as 0.7 in the west of Brazilian Amazon. We estimated “average” to “high” values in central and western Amazon (0.3-0.5) and “average” in the center-south and southeast (around 0.3). We found HR in the northeast semi-arid of Brazil classified as “very low” (close to 0.1). Brazil has climates changing from humid and rainy to semi-arid regions. Besides analyzing the regional distribution of the HR across the country, we explored the effects of the interannual variability associated with ENSO and La Niña. We used the normal climate average over thirty years as the standard for comparing the differences associated with the two anomalies. We noticed that the subbasins of the southern regions showed positive variations in water production while the Brazilian Amazon basin showed no response. Also, the areas of lower HR in the northeast Brazil were further reduced.

Keywords: Hydrologic mapping; interannual anomalies.

Resposta hidrológica das regiões brasileiras e sua variabilidade associada com El Niño e La Niña

RESUMO

O Brasil possui uma vasta densidade de rios importantes drenando para leste, oeste, sul e norte. A vazão destas bacias varia com o clima e a distribuição espacial de taxas de precipitação. Analisamos aqui a resposta hidrológica das oito grandes bacias hidrográficas do Brasil e suas sub-bacias, para um período de 30 anos de dados, de 1970 a 2000. Resposta hidrológica é definida como a vazão de uma bacia normalizada pela precipitação espacializada sobre sua superfície. A forçante atmosférica modula a resposta das grandes bacias. Na escala local, o controle geológico também é importante. A resposta hidrológica média atinge 0.7 (classificada como elevada) para a região oeste da Amazônia. Valores de médios a elevados (0.3-0.5) foram mapeados na parte central e sudoeste da Amazônia enquanto valores médios (0.3) prevalecem nas regiões sudeste e sul. No semi-árido do nordeste, a resposta é muito baixa (0.1). O Brasil possui climas que vão do quente e chuvoso ao semi-árido. Além de analisar a variabilidade regional da resposta hidrológica, avaliamos também os efeitos da variabilidade inter-anual associada aos eventos ENSO e La Niña.
Usamos a resposta média de 30 anos como referência. Notamos que as bacias do sul do país mostraram variação positiva, as da Amazônia se mantiveram neutras e as do nordeste mostraram resposta hidrológica ainda mais reduzida.

Palavras-chave: Hidrologia; Resposta hidrológica; El Niño; La Niña

1. **INTRODUCTION**

Hydrological Response is the speed of reaction of storm flow following rainstorms in the drainage channels (Hewlett; Hibbert, 1967; Hewlett, 1982). This response can vary within the basin itself depending on its scale. Despite the original definition, as it normalizes water production to rainfall rates, its average value over many years is interpreted as the average water balance, since water storage variation in the soil is negligible over several hydrologic years. In this way, Hydrologic Response maps of basins could be a valuable analysis tool for water production assessment. Surface water flowing in rivers is the greatest source of freshwater for human use, for domestic and industrial use, for agriculture, and for the generation of energy. Water from rainfall follows different paths, with part feeding the aquifers, remaining in storage for a certain time before reaching rivers and channels and part evaporating from the soil surface or from tree canopies. Stored water also reaches plants roots and then the atmosphere by transpiration. Thus, a basin’s average Hydrologic Response, given a significant interval to allow water redistribution in the soil, matches the balance of water produced within a basin integrated in time (Carriello, 2004). For large hydrological basins, climate forcing is determinant of the Hydrologic Response. Geology, the physical properties of soils that define water storage capacity (depth and texture) influence the residence time for the water in the basin. The soil cover (type and density of vegetation) that affects the water infiltration rates into the soil is also important to the Hydrologic Response (Hewlett, 1982).

This work was carried out to discuss and make available Hydrologic Response maps for the large hydrological regions of Brazil.

2. **DATA, TOOLS AND METHODS**

As previously stated in this work we compile, discuss and make available Hydrologic Response maps for the large hydrological regions of the country, as defined by ANA, the Brazilian National Water Agency. The eight hydrologic zones are the Amazon, Araguaia-Tocantins, the North-Northeast Atlantic, São Francisco, the Eastern-Atlantic, Paraguay-Paraná, Uruguay and the Southeast Atlantic. Also, we have assessed how interannual hydrometeorological variability can regionally influence the Hydrologic Response, considering the “El Niño” and “La Niña” in two strong events within the 30-year period studied from 1970 to 2000. Figure 1 shows the regions.

2.1. Hydrological Response: the concept

As above Hydrological Response, HR, refers to how rainstorms evolve into storm flow in the drainage channels. Hydrological response is the ratio between river flow and rainfall. In other words, it is the water production of a given hydrographic basin normalized by the rainfall rates that takes place in it. Then:

$$HR = \frac{Q}{P} \tag{1}$$

Figure 1. Hydrologic regions and subbasins of Brazil: 1) Amazon; 2) Araguaia / Tocantins; 3) North / Northeast Atlantic; 4) São Francisco; 5) East Atlantic; 6) Paraná / Paraguay; 7) Uruguay and 8) Southeast Atlantic.

Source: Adapted from ANA, Agência Nacional de Águas - Brasil (2003).

Q is the river flow in a stretch of water normalized by the area of the basin contributing water to a particular river section. P is rainfall determined by the weighted average considered for the basin. The interpolation considers the gauging station distribution and a representative surface area, a classic method known as Thiessen polygons. In the original definition, Hydrologic Response refers to individual rainfall events over 25 mm, as it is unlikely that lower rainfall would produce runoff and change the river flow regime. However, it is more usual to estimate the average Hydrologic Response by integrating in time rainfall and river flow for the same fluviometric station. Mathematically:

\[HR = \frac{Q}{P} \]

Q (is calculated from the ratio between river flow (in L^3 T^{-1} units) and the area (L^2) drained For some basins of high order rivers, such as the São Francisco River, we count the increase in Q between two consecutive fluviometric stations for the same basin or subbasin. Time is the implicit integration variable. With rainfall (P, also in L units) it follows that Hydrologic Response is dimensionless. Then one can interpret HR as the fraction of the integrated rain rates which result in water production in a given basin. This becomes a relevant piece of information for water use management and planning purposes for the regions of interest. The use of river flow rates data alone does not give comparable measures across the regions.

2.2. River flow data

To draw the Hydrologic Response maps, we gathered 74 out of the 76 subbasins in Brazil of the eight large hydrological regions of the country. We selected the stations with river flow data from surveys from the “Fluviometric Station Inventory” (Brasil, 1997), and from the “Agência Nacional de Águas” (Brasil, 2003). From these sources we picked the stations which had the data for the period from 1970 to 2000, as well as information available on the area drained by the station, geographical coordinates (latitude, longitude), and its
working period. The data, consisting of river flow from each fluvimetric station available at the ANA website (http://www.ana.gov.br), was initially restored in daily averages and converted into monthly and annual averages to calculate the annual runoff for each surveyed basin.

2.3. Rainfall data

The rainfall data used to calculate the HR were compiled and interpolated by the Tyndall Center for Climate Change Research (New et al., 1999, 2000, 2002). The data are available in grids of 0.5º x 0.5º for the whole terrestrial globe for the period from 1900 to 2000. These data are in monthly archives and were processed from data handed over by meteorological agencies and research institutions from several countries. Among providers of data are the International Center for Tropical Agriculture (CIAT), the Climatic Research Unit (CRU - Tyndall Center) and the World Meteorological Organization (WMO). We integrated the monthly rainfall data into annual data to calculate the Hydrologic Response.

We used spatial interpolation of the rainfall data to estimate the values for places where there is no data available. The interpolator chosen was the “Thin-plate spline,” which considers polynomial operators and uses point data to adjust a surface, given a set of points. This technique is suitable for areas in which point data has irregular spatial distribution, as is the case for Brazil. The surface created by this interpolator presents an adjustment to reduce sharp changes in the generation of the isoline data under interpolation. The resulting surface of rainfall is associated with latitude, longitude and elevation (New et al., 1999).

2.4. Estimating the Hydrologic Response

The river flow and rainfall data for the time frame between 1970 and 2000 were used in calculating the annual Hydrologic Response from 74 subbasins of the eight hydrological regions in Brazil. The eight regions comprise the whole country (Amazon, Araguaia-Tocantins, Atlantic N-NE, São Francisco, eastern Atlantic, Paraguay-Paraná, Uruguay and the southeast Atlantic). The National Water Agency has organized its data banks into 12 regions. For this work the basins from the Atlantic North-Northeast include the basins from Parnaíba River and the northeast Atlantic, as the southeastern and eastern Atlantic basins are integrated as one single region. To present the results we used the shareware GrADS (Grid Analysis and Display System), dedicated to manipulate and allow visual analysis of scientific data with spatial representation (available at http://grads.iges.org/grads/grads.html). These results were interpolated, having considered the radius of influence from the measuring stations and plotted by the application in annual graphs for the period under consideration. In a simplified form, the closer the station, the greater the weight exercised in considering the estimated value of the data. For this study a lag of two months was set up between the rainfall and river flow. We fixed this lag after the analysis of rainfall and river flow for several subbasins representing all hydrological regions, showing that peak river flow happens, on average, two months after the greatest rainfall events (in monthly averages). Thus, for a given month, calculating the Hydrologic Response should be done considering the rain from two months before. For example, for the rain from October 1970, the river flow is from December 1970.

In this way we calculated the Hydrologic Responses for 74 subbasins out of the 76 subbasins in Brazil. The two subbasins not considered (80 and 89) did not have enough river flow data in fluvimetric stations for the period studied.

In processing the rainfall data within the GrADS environment, we used a method by which the data from a certain surface (sub-basin) could be calculated just for this specific area (masks). From here the annual average of spatially spread values could be determined, in millimeters, for each one of these subbasins for each year in the period under consideration.
The rainfall data for Brazil are available for the region between 6°N to 34°S and 74° W to 34°W. (New et al., 1999, 2000, 2002). Given the working scale, topography is not taken into account.

2.5. Brazilian hydrographic regions

As shown in Figure 1, Brazil has been divided into eight hydrographic regions. According to the drainage pattern, there are two main types of basin. The first category is formed by basins which drain to a single river, the subbasins being linked one after the other. In this first category are basins: 1 (Amazon hydrographic region), 2 (Araguaia-Tocantins hydrographic region), 4 (São Francisco hydrographic region), 6 (Paraná-Paraguay hydrographic region) and 7 (Uruguay hydrographic region). The second category are hydrographic regions whose basins’ rivers flow to the Atlantic Ocean, not having a main river (with some exceptions, for example the subbasin Paraíba do Sul) but several rivers flowing to the Atlantic. This second group includes basins in regions 3, 5 and 8 (Atlantic North-Northeast hydrographic region, Southeast area and East area, respectively). The large basins are divided into smaller basins formed by the main tributaries. Most of the large hydrographic regions are subdivided into ten subbasins. In Brazilian territory alone, the Paraná-Paraguay (6) hydrographic region has eight subbasins and the Uruguay (7) and East Atlantic region (8) has nine. The total number of subbasins analyzed was 76.

2.6. Hydrological response maps analyzes

To produce Hydrologic Response maps of the Brazilian subbasins we considered the hydrological year beginning on 1st October and ending on 30th September of the following year. October is the beginning of the rainy season for the most of the country, except for a few subbasins north of the equator in the Amazon region. River flow data was gathered for the period from 1970 to 2000 from fluviometric stations installed on the rivers of the respective subbasins.

The use of the whole period of data made possible what can be called a map of the Hydrologic Response norms in Brazil. Two El Niño and La Niña hydrological years were also analyzed (interannual and spatial hydrometeorological precipitation variability), as case studies for the effect of interannual variability on Hydrologic Response.

Interannual variability is, in the case of rain, more obvious when atmospheric circulations influence large areas and the precipitation increases or reduces in different regions, bringing about a consequent increase or decrease of the Hydrologic Response. One example is the ENSO (El Niño Southern Oscillation), a disturbance in the tropical Pacific ocean-atmosphere with consequences for the weather and the climate around the globe (Trenberth, 1997). In the years with a persistent and strong ENSO signal, it exercises a distinct meteorological influence for the southern and northeastern regions of Brazil. For the former it causes an increase in the average precipitation, whilst for the latter, a decrease from the average values for the semi-arid climate, including severe droughts in certain years (Marengo; Uvo, 1996) On the other hand, La Niña (cooling the equatorial waters of the Pacific Ocean) produces above average rainfall in the northeast semi-arid region and below average for the southern (Marengo; Uvo, 1996). Figure 2 pictures the typical anomalies for the surface temperature of the equatorial Pacific Ocean resultant from El Niño (warming) and La Niña (cooling) oscillations.

The 1982-83 El Niño can be considered one of the strongest in the 20th Century (Marengo et al., 1998b) and whose influence on the Hydrologic Response is assessed here. This El Niño was neither forecast nor recognized by the scientific community in its early phases. The effects of the La Niña discussed here are from the analysis of the spatial variation
of Hydrologic Response for the period 1974-75, also a well-established and representative event. We did not include these two years when estimating the average for the period between 1970 and 2000. We carried out paired Student's t-test statistics to analyze the differences in Hydrologic Response of subbasins in the same hydrographic region associated with the two strong anomalies.

Figure 2. ENSO and La Niña anomalies in sea surface temperature of the Equatorial Pacific Ocean. SOURCE: Adapted from http://www.elnino.noaa.gov/lanina.html.

3. RESULTS AND DISCUSSION

On the global annual hydrological balance for the continents, from a total precipitation of 0.1 km3, a fraction of 0.07 km3 returns to the atmosphere by evapotranspiration, and 0.03 km3 flows into the oceans (Hewlett, 1982). It is therefore inferred that average global Hydrologic Response is 0.3 (that is, 30% of rainfall is transformed into rivers). We can then propose a table of classes of Hydrologic Response (Table 1).

Table 1. Table of range and associated classes of Hydrologic Response considering the global average.

<table>
<thead>
<tr>
<th>Range</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.15</td>
<td>Very low</td>
</tr>
<tr>
<td>0.15-0.25</td>
<td>Low</td>
</tr>
<tr>
<td>0.25-0.35</td>
<td>Average</td>
</tr>
<tr>
<td>0.35-0.45</td>
<td>High</td>
</tr>
<tr>
<td>> 0.45</td>
<td>Very high</td>
</tr>
</tbody>
</table>

Figure 3 presents the Hydrologic Response from the annual averages for the 30-year period (1970-2000). The average spatial HR standard presents very high values (reaching 0.7, i.e. 70% of rainstorms become river flow out of the drainage area) in the west of the Brazilian Amazon region and in some subbasins of southern Brazil. We estimated average to high values in central and western Amazonia (0.3-0.5) and average values in the center south and southeast (around 0.3). We found a very low HR in the northeast semi-arid of Brazil and the center west region at the border of Brazil with Bolivia (close to 0.1). Hydrological response cannot be explained just as a direct and linear product of precipitation. As already stated, other factors, such as the soil coverage, basin morphology, soil types and geology which make up the geospatial structure, also influence this variable (Woodruf; Hewlett, 1970). This holds true especially for microbasin and individual rainstorm events. When a time period is considered for characterizing the climate norms (30 years in this case), energy (incoming solar radiation) also plays an important role along with soil cover. Tropical
rain forests have leaf area indices above 5.0 (Roberts et al., 1996). Hence, available soil water storage combined with solar radiation which varies little throughout the year (at latitudes below 10°), leads to rates of evapotranspiration which reach almost 1,500 mm. Similar rates were found by Roberts et al (1996), Soares and Almeida (2001), Almeida and Soares (2003) for the rain forests and Eucalypt plantations. With precipitation rates of 2,200 to 2,500 mm, the Hydrologic Responses are not so much above the worldwide average (30% of worldwide continental precipitation flowing into the oceans) (Hewlett, 1982). But, still 700 to 1000 mm of evapotranspiration may mean a lot for regional export of water vapor and the amount recycled in the region itself. For the westernmost part of the Brazilian Amazon where annual precipitation exceeds 3,000 mm, Hydrologic Response reaches very high values. This may be explained by less evapotranspiration because of an increase in cloud cover and a consequent reduction in available incoming solar radiation.

Figure 3. Average Hydrologic Response for the period 1970 to 2000.

The Brazilian northeast is characterized, in its interior (the “sertão” covered by the “Caatinga”, a savanna-like vegetation), by a semi-arid climate which has led to creating a geopolitical region denominated “Polígono das Secas”, which translates as “Drought Area”. In this huge area droughts reach over 1,500 municipalities. Local administrations constantly search for solutions on several levels such as building dams for water storage and desalination of groundwater. More recently, the Federal Government decided on diverting part of the flow from the São Francisco River to supply several of the region’s rivers. The annual average rainfall is around 800 mm or lower. A large part of the northeast (taking in the basins from North-Northeast Atlantic and part of São Francisco), is characterized by very low Hydrologic Responses (below 0.15, average close to 0.10). This means that only about 10% of the total annual rainfall drains out as river waters in a given regional drainage subbasin. These responses are explained by combining two variables in the hydrological balance: lower than average rainfall and a high amount of solar energy. Figure 4 shows that in the semi-arid sertão the maximum irradiation has average annual values of 6000 Whm⁻², values 30% greater than those for the east of the southern region of the country (Brasil, 1998). Again, although a map of HR is not a new information, it is a valuable way of presenting and interpreting data for the planning and decision making on water, which is of particular interest for areas often subject to low rainfall.
Following the Hydrologic Response patterns during the period studied, it is seen that some regions present patterns that repeat themselves, it being possible to define this behavior. The northern region presents high average responses, the northeast region low responses, the center south and southeast regions have average responses; and the southern region presents average to high responses. However, this pattern is associated with the vegetation distribution through the large hydrological regions of the country and may be analyzed within this geographical context.

The spatial distribution of the Hydrologic Response presents significant variations in certain years. One of the causes of the interannual hydrometeorological variability is the presence of the El Niño and La Niña. Marengo and Uvo (1996) stress the correspondence between rain and river discharge is not linear; however, it can be assumed that rainfall anomalies provoke discharge changes of the same dimensions. According to them, the discharges are part of the spatial variability of precipitation within the basin. In this way, these precipitation anomalies can be related to Hydrologic Response.

Figure 4. Annual Average Irradiation (Wh/m²) for the period 1995-98.

Source: Adapted from the Atlas of Solar Irradiation in Brazil - INMET (Brasil, 1998).

Figure 5 shows the response map for the El Niño 1982-83. In the northeast region, for example, the already low HR levels (between the parallels 35°-45° W; and 2.5°-15° S) become even lower. The center-southern and southern regions basins produce more water because ENSO leads to increased precipitation in these areas.

To show another variability in the other sense, figure 6 shows the Hydrologic Response map based on data for the year 1974-1975, with La Niña. An increase can be seen in the response in the northeast region, above all between the 45°W and 38°W in comparison to the 30-year annual average. Conversely, there is also a decline in Hydrologic Response in some subbasins of the southern hydrological region. Visual identification alone is difficult because of the gray scale chosen to represent the overall classes of Hydrologic Response.

Figure 5. Hydrologic response for the ENSO 1982-83 event. The semi-arid northeast experience negative water production while center-south and south basins display positive responses.

We used statistical analysis to compare the relative behavior of Hydrologic Responses for years of strong El Niño or La Niña. The assumption was that events with strengths close to the ones studied would induce similar results whenever they happen again. The numbers of the northeast region (number ID 32-39, 47, 49) are shown in Table 2. For the particular El Niño 1982/83 event, the averaged regional Hydrologic Response associated with negative precipitation anomalies reduced from 0.08 (or 8%) to 0.05 (or 5%). Conversely for the 1974/75 La Niña the average rose from 0.10 to 0.12 (12%). Paired Student's t-test performed to compare these two Hydrologic Responses showed that they are significantly different at 1% (*p-value* 0.0002). The positive average of La Niña – El Niño of 0.07, shown in Table 2, is
A clear sign of moister conditions during the particular event (with more water production for the river basins).

Table 2. Comparison of the changes in Hydrologic Region of subbasins located in the semi-arid northeast region, for two strong events of El Niño (1982/82) and La Niña (1974/75). The leftmost column is the basin ID number and the last line are the mean values.

<table>
<thead>
<tr>
<th>Basin ID</th>
<th>30-year Average</th>
<th>El Niño</th>
<th>La Niña</th>
<th>Δ</th>
<th>Δ</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>0.17</td>
<td>0.09</td>
<td>0.22</td>
<td>-0.08</td>
<td>0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>33</td>
<td>0.15</td>
<td>0.13</td>
<td>0.17</td>
<td>-0.02</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>34</td>
<td>0.11</td>
<td>0.12</td>
<td>0.15</td>
<td>0.01</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>35</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>36</td>
<td>0.07</td>
<td>0.04</td>
<td>0.14</td>
<td>-0.03</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>37</td>
<td>0.08</td>
<td>0.04</td>
<td>0.13</td>
<td>-0.04</td>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>38</td>
<td>0.04</td>
<td>0.02</td>
<td>0.07</td>
<td>-0.02</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>39</td>
<td>0.06</td>
<td>0.05</td>
<td>0.09</td>
<td>-0.01</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>47</td>
<td>0.04</td>
<td>0.01</td>
<td>0.13</td>
<td>-0.03</td>
<td>0.09</td>
<td>0.12</td>
</tr>
<tr>
<td>49</td>
<td>0.03</td>
<td>0.02</td>
<td>0.07</td>
<td>-0.01</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Average</td>
<td>0.08</td>
<td>0.05</td>
<td>0.12</td>
<td>-0.02</td>
<td>0.04</td>
<td>0.07</td>
</tr>
</tbody>
</table>

In the southern part of the Amazon basin the increase in Hydrologic Response can be noted during the 1982/82 El Niño compared to the annual 30-year average. Also noted is the decrease of the response in the northern part of the Amazon basin, which suggests lower levels of peak and minimum river discharge from the Amazon River itself. According to Zeng (1999), the influence of an ENSO event in Amazon basin runoff occurs up to seven months after the beginning of the event. Therefore, the influence of the on the region can occur within the hydrological year under study and in following years. The soil moistness of the Amazon basin during El Niño events is reduced in the same scale as the precipitation subordinated to an El Niño event (Poveda; Mesa, 1997). Table 3 displays the paired Student's t-test performed to compare the Hydrologic Responses for 1982/83 El Niño and 1974/75 La Niña, for the Amazon region (number ID 10-19). Paired Student's t-test performed to compare those two Hydrologic Responses for the Amazon region showed that they are not significantly different at 1% (p-value 0.1980). These results agree with Marengo et al. (1998b) showing no significant trends in the discharge or stage records from Amazonia. The differences remarked by those authors for the Amazon basin on the ENSO have behavior which varies with its position: the sub-basin. Central and southern Amazonia present a tendency to have positive Hydrologic Response differences in El Niño periods, while the subbasins of the north have a tendency to present negative differences is Hydrologic Response during El Niño events. Marengo et al. (1998a), assessing the relationship between Amazonia and the El Niño Southern Oscillation state that several authors have found positive (negative) river discharge anomalies in subbasin in the south (north) of Amazonia. They also show similar results for the northern portion of Amazonia where dryer conditions dominate during El Niño events, while more humid conditions prevail in the southern and central regions of Amazonia. As for the 1974/75 La Niña, we also found spatial correlations that are the other way around, as dryer conditions prevail in southern and central Amazônia, while the northern portion accounted for higher Hydrologic Responses.

Table 3

Comparison of the changes in Hydrologic Response of subbasins located in the Amazon region, for two strong events of El Niño (1982/82) and La Niña (1974/75).

<table>
<thead>
<tr>
<th>Basin ID</th>
<th>30-year Average</th>
<th>El Niño</th>
<th>La Niña</th>
<th>Δ El Niño</th>
<th>Δ La Niña</th>
<th>Δ (La Niña - El Niño)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.56</td>
<td>0.51</td>
<td>0.59</td>
<td>-0.05</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>11</td>
<td>0.58</td>
<td>0.64</td>
<td>0.56</td>
<td>0.06</td>
<td>-0.02</td>
<td>-0.08</td>
</tr>
<tr>
<td>12</td>
<td>0.48</td>
<td>0.51</td>
<td>0.44</td>
<td>0.03</td>
<td>-0.04</td>
<td>-0.07</td>
</tr>
<tr>
<td>13</td>
<td>0.33</td>
<td>0.36</td>
<td>0.23</td>
<td>0.03</td>
<td>-0.10</td>
<td>-0.13</td>
</tr>
<tr>
<td>14</td>
<td>0.39</td>
<td>0.37</td>
<td>0.31</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.06</td>
</tr>
<tr>
<td>15</td>
<td>0.31</td>
<td>0.35</td>
<td>0.15</td>
<td>0.04</td>
<td>-0.16</td>
<td>-0.20</td>
</tr>
<tr>
<td>16</td>
<td>0.37</td>
<td>0.17</td>
<td>0.52</td>
<td>-0.20</td>
<td>0.15</td>
<td>0.35</td>
</tr>
<tr>
<td>17</td>
<td>0.32</td>
<td>0.37</td>
<td>0.25</td>
<td>0.05</td>
<td>-0.07</td>
<td>-0.12</td>
</tr>
<tr>
<td>18</td>
<td>0.28</td>
<td>0.30</td>
<td>0.24</td>
<td>0.02</td>
<td>-0.04</td>
<td>-0.06</td>
</tr>
<tr>
<td>19</td>
<td>0.28</td>
<td>0.20</td>
<td>0.28</td>
<td>-0.08</td>
<td>0.00</td>
<td>-0.08</td>
</tr>
<tr>
<td>Average</td>
<td>0.39</td>
<td>0.38</td>
<td>0.36</td>
<td>-0.02</td>
<td>-0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

The variability of the Hydrologic Response for the southern region and its basins associated with ENSO 1982-83/ La Niña 1974-75 can be depicted in Table 4. Basins 7 and 8 were analyzed together because they belong to the same climatic region in the south of the country. The differences were significant at 1% (p-value 0.0001). One can see the average difference La Niña - El Niño was -0.18, the negative showing the dryer conditions associated with La Niña and wetter with El Niño. The same tendency was shown for the basins of the Parana-Paraguai rivers (center-south geographic region), with statistical differences at 1% (p-value 0.0015) and average difference La Niña - El Niño of -0.19 (Table 5).

Table 4

Comparison of the changes in Hydrologic Response of subbasins located in the southern region, for two strong events of El Niño (1982/82) and La Niña (1974/75).

<table>
<thead>
<tr>
<th>Basin ID</th>
<th>30-year Average</th>
<th>El Niño</th>
<th>La Niña</th>
<th>Δ El Niño</th>
<th>Δ La Niña</th>
<th>Δ (La Niña - El Niño)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>0.44</td>
<td>0.60</td>
<td>0.31</td>
<td>0.16</td>
<td>-0.13</td>
<td>-0.29</td>
</tr>
<tr>
<td>71</td>
<td>0.46</td>
<td>0.56</td>
<td>0.38</td>
<td>0.10</td>
<td>-0.08</td>
<td>-0.18</td>
</tr>
<tr>
<td>72</td>
<td>0.41</td>
<td>0.54</td>
<td>0.32</td>
<td>0.13</td>
<td>-0.09</td>
<td>-0.22</td>
</tr>
<tr>
<td>73</td>
<td>0.48</td>
<td>0.75</td>
<td>0.43</td>
<td>0.27</td>
<td>-0.05</td>
<td>-0.32</td>
</tr>
<tr>
<td>74</td>
<td>0.53</td>
<td>0.91</td>
<td>0.46</td>
<td>0.38</td>
<td>-0.07</td>
<td>-0.45</td>
</tr>
<tr>
<td>75</td>
<td>0.48</td>
<td>0.75</td>
<td>0.46</td>
<td>0.27</td>
<td>-0.02</td>
<td>-0.29</td>
</tr>
<tr>
<td>76</td>
<td>0.37</td>
<td>0.43</td>
<td>0.39</td>
<td>0.06</td>
<td>0.02</td>
<td>-0.04</td>
</tr>
<tr>
<td>81</td>
<td>0.45</td>
<td>0.53</td>
<td>0.37</td>
<td>0.08</td>
<td>-0.08</td>
<td>-0.16</td>
</tr>
<tr>
<td>82</td>
<td>0.63</td>
<td>0.71</td>
<td>0.57</td>
<td>0.08</td>
<td>-0.06</td>
<td>-0.14</td>
</tr>
<tr>
<td>83</td>
<td>0.57</td>
<td>0.53</td>
<td>0.61</td>
<td>-0.04</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>84</td>
<td>0.48</td>
<td>0.57</td>
<td>0.37</td>
<td>0.09</td>
<td>-0.11</td>
<td>-0.20</td>
</tr>
<tr>
<td>85</td>
<td>0.38</td>
<td>0.51</td>
<td>0.43</td>
<td>0.13</td>
<td>0.05</td>
<td>-0.08</td>
</tr>
<tr>
<td>86</td>
<td>0.42</td>
<td>0.55</td>
<td>0.35</td>
<td>0.13</td>
<td>-0.07</td>
<td>-0.20</td>
</tr>
<tr>
<td>Average</td>
<td>0.44</td>
<td>0.57</td>
<td>0.39</td>
<td>0.13</td>
<td>-0.05</td>
<td>-0.18</td>
</tr>
</tbody>
</table>

Ropelewski and Halpert (1987) have studied global and regional precipitation patterns and have noted that the Brazilian northeast is one of the regions of the globe where there is
the greatest association between ENSO and precipitation. Nine out of eleven drought events studied occurred in association with El Niño years and no wet season occurred during El Niño years. Cavalcanti (1996) found negative precipitation differences in the northeast region and positive ones in the southern region during the decade from 1986 to 1996 in El Niño periods. In the northeast region the worst period occurred during the drought from 1990 to 1993, and only in 1994 did the rainy season present positive rainfall anomalies. On the other hand, in the south of South America the El Niño effect is so strong, however, that there is a clear tendency to increase precipitation. Kousky et al. (1984) described the tendency for severe drought in certain tropical and subtropical regions and excessive precipitation in other regions during the El Niño periods. However, there will not always be a drought, as it depends on other climate forcings.

In Table 6 we display the analysis of the effects of ENSO and La Niña on the hydrologic response for the Tocatins-Araguaia region (center-north). No significance was found at 1% (p-value 0.0830). Fewer cold fronts reach these areas compared to other basins so no notable effects are expected because of general circulation changes associated with ENSO and La Niña events. In Table 7 there is the same analysis for the Atlantic-East basin (basin ID 50-59). Again no significance is found at 1% (p-value 0.0326). In these coastal basins, which are in the domain of the Atlantic anticyclonic circulation pushing moist air over the area.

Table 5. Comparison of the changes in Hydrologic Response of subbasins located in the Paraná-Paraguai region (center-south geographic region), for two strong events of El Niño (1982/83) and La Niña (1974/75).

<table>
<thead>
<tr>
<th>Basin ID</th>
<th>30-year Average</th>
<th>El Niño</th>
<th>La Niña</th>
<th>Δ El Niño</th>
<th>Δ La Niña</th>
<th>Δ (La Niña - El Niño)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.33</td>
<td>0.44</td>
<td>0.26</td>
<td>0.11</td>
<td>-0.07</td>
<td>-0.18</td>
</tr>
<tr>
<td>61</td>
<td>0.37</td>
<td>0.56</td>
<td>0.37</td>
<td>0.19</td>
<td>0.00</td>
<td>-0.19</td>
</tr>
<tr>
<td>62</td>
<td>0.26</td>
<td>0.41</td>
<td>0.18</td>
<td>0.15</td>
<td>-0.08</td>
<td>-0.23</td>
</tr>
<tr>
<td>63</td>
<td>0.33</td>
<td>0.41</td>
<td>0.27</td>
<td>0.08</td>
<td>-0.06</td>
<td>-0.14</td>
</tr>
<tr>
<td>64</td>
<td>0.40</td>
<td>0.61</td>
<td>0.34</td>
<td>0.21</td>
<td>-0.06</td>
<td>-0.27</td>
</tr>
<tr>
<td>65</td>
<td>0.52</td>
<td>0.66</td>
<td>0.49</td>
<td>0.14</td>
<td>-0.03</td>
<td>-0.17</td>
</tr>
<tr>
<td>66</td>
<td>0.20</td>
<td>0.13</td>
<td>0.19</td>
<td>-0.07</td>
<td>-0.01</td>
<td>-0.06</td>
</tr>
<tr>
<td>67</td>
<td>0.27</td>
<td>0.46</td>
<td>0.13</td>
<td>0.19</td>
<td>-0.14</td>
<td>-0.33</td>
</tr>
<tr>
<td>Average</td>
<td>0.34</td>
<td>0.46</td>
<td>0.28</td>
<td>0.13</td>
<td>-0.06</td>
<td>-0.19</td>
</tr>
</tbody>
</table>

Figure 7 shows the river discharge from the Amazon river, measured at the Óbidos fluvimetric station (Lat: 1° 56' 50" S, Long: 55° 30' 40" W). The time frame includes the two periods of anomalies cited above (1974-75 for La Niña, 1982-83 for El Niño). The Óbidos station integrates the Hydrologic Responses for the whole Amazon basin above the station. Then the effects of the oscillations are variable, reducing rainfall in the northern part and with such little effect on the southern region that the smaller scale effects are not clearly observable. However, it is seen that in the La Niña period river discharge in Óbidos was near the maximum observed in the period, while for the El Niño period it was near the minimum at the beginning of the period.
Table 6. Comparison of the changes in Hydrologic Response of subbasins located in the Tocantins-Araguaia region (center-north geographic region), for two strong events of El Niño (1982/82) and La Niña (1974/75).

<table>
<thead>
<tr>
<th>Basin ID</th>
<th>30-year Average</th>
<th>El Niño</th>
<th>La Niña</th>
<th>Δ El Niño</th>
<th>Δ La Niña</th>
<th>Δ (La Niña - El Niño)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.24</td>
<td>0.28</td>
<td>0.22</td>
<td>0.04</td>
<td>-0.02</td>
<td>-0.06</td>
</tr>
<tr>
<td>21</td>
<td>0.24</td>
<td>0.28</td>
<td>0.16</td>
<td>0.04</td>
<td>-0.08</td>
<td>-0.12</td>
</tr>
<tr>
<td>22</td>
<td>0.28</td>
<td>0.31</td>
<td>0.24</td>
<td>0.03</td>
<td>-0.04</td>
<td>-0.07</td>
</tr>
<tr>
<td>23</td>
<td>0.30</td>
<td>0.31</td>
<td>0.33</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>24</td>
<td>0.38</td>
<td>0.44</td>
<td>0.24</td>
<td>0.06</td>
<td>-0.14</td>
<td>-0.20</td>
</tr>
<tr>
<td>25</td>
<td>0.22</td>
<td>0.23</td>
<td>0.21</td>
<td>0.01</td>
<td>-0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td>26</td>
<td>0.29</td>
<td>0.34</td>
<td>0.20</td>
<td>0.05</td>
<td>-0.09</td>
<td>-0.14</td>
</tr>
<tr>
<td>27</td>
<td>0.28</td>
<td>0.25</td>
<td>0.33</td>
<td>-0.03</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>28</td>
<td>0.35</td>
<td>0.37</td>
<td>0.36</td>
<td>0.02</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>29</td>
<td>0.19</td>
<td>0.12</td>
<td>0.20</td>
<td>-0.07</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>Average</td>
<td>0.28</td>
<td>0.29</td>
<td>0.25</td>
<td>0.02</td>
<td>-0.03</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

Table 7. Comparison of the changes in Hydrologic Response for subbasins located in the East-Atlantic region, for two strong events of El Niño (1982/82) and La Niña (1974/75).

<table>
<thead>
<tr>
<th>Basin ID</th>
<th>30-year Average</th>
<th>El Niño</th>
<th>La Niña</th>
<th>Δ El Niño</th>
<th>Δ La Niña</th>
<th>Δ (La Niña - El Niño)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.08</td>
<td>0.08</td>
<td>0.06</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>51</td>
<td>0.08</td>
<td>0.08</td>
<td>0.06</td>
<td>-0.02</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>52</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>53</td>
<td>0.06</td>
<td>0.09</td>
<td>0.09</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>54</td>
<td>0.21</td>
<td>0.20</td>
<td>0.38</td>
<td>0.17</td>
<td>-0.01</td>
<td>-0.18</td>
</tr>
<tr>
<td>55</td>
<td>0.29</td>
<td>0.21</td>
<td>0.63</td>
<td>0.34</td>
<td>-0.08</td>
<td>-0.42</td>
</tr>
<tr>
<td>56</td>
<td>0.30</td>
<td>0.29</td>
<td>0.34</td>
<td>0.04</td>
<td>-0.01</td>
<td>-0.05</td>
</tr>
<tr>
<td>57</td>
<td>0.34</td>
<td>0.32</td>
<td>0.35</td>
<td>0.01</td>
<td>-0.02</td>
<td>-0.03</td>
</tr>
<tr>
<td>58</td>
<td>0.28</td>
<td>0.31</td>
<td>0.49</td>
<td>0.21</td>
<td>0.03</td>
<td>-0.18</td>
</tr>
<tr>
<td>59</td>
<td>0.35</td>
<td>0.40</td>
<td>0.48</td>
<td>0.13</td>
<td>0.05</td>
<td>-0.08</td>
</tr>
<tr>
<td>Average</td>
<td>0.20</td>
<td>0.20</td>
<td>0.29</td>
<td>0.09</td>
<td>0.00</td>
<td>-0.09</td>
</tr>
</tbody>
</table>

As for other important hydrologic regions, Amarasekera et al. (1997) associated the increase in river discharge in the Paraná River with El Niño years. More recently, Camilloni and Barros (2003) have also proved the correlation that exists between river discharge in the Paraná River and El Niño events. They reported a positive correlation between the ENSO and the positive river discharge anomaly of the high Paraná, placed between the confluence of the Rio Grande and Parnaíba (beginning) and the city of Corrientes in Argentina. They noted that out of the sixteen greatest discharges of the Paraná River in Corrientes, eleven occurred during El Niño, while none occurred in La Niña periods.
El Niño events result in positive precipitation anomalies in the south, while La Niña years produce negative anomalies. Ropelewski and Halpert (1987) have stressed that in the south of the country, out of sixteen El Niño events studied there were fourteen episodes of higher rainfall.

Based on the period chosen to represent the normal climatic forcing and the two extreme events of El Niño and La Niña, the overall analysis showed no significant differences for El Niño - La Niña years for the Amazon region and the Araguaia-Tocantins basins (North and center-north of the country). For the other regions we found differences. The southern half of the country (including south, southeast Paraná-Paraguai), the El Niño anomaly of more precipitation was also seen in the water production from the basins, with La Niña responding with a negative anomaly in water availability. The northeast semi-arid region where droughts are severe were affected the other way around, with El Niño reducing the already low water production and La Niña being a positive anomaly for water flowing out of the basins.

4. CLOSING REMARKS

Hydrological response maps were obtained for all the large hydrological regions in Brazil, considering 74 subbasins, for 30 hydrological years from 1970 to 2000. These maps show that the Hydrological Response follows the country’s climatological pattern, considering precipitation, radiation and phytogeographic distribution as climate modulators and indicators. We found very high responses for the west of Amazonia and the south of Brazil (reaching 0.7), average to high values for central Amazonia the mid-west and the southeast of the country (0.3-0.5 range) and very low responses for all the Drought Area (close to 0.1).

Interannual hydrometeorological variability, in particular the precipitation anomalies associated with the El Niño and La Niña, produce changes in the annual Hydrologic Responses for some hydrological regions of the country. El Niño events aggravate the dryness of the Brazilian northeast and reduce Hydrologic Responses in the northern part of the Amazon region. The other way around, El Niño increases the Hydrological Response with more rainfall in the basins in the south of the country. La Niña events produce an increase in Hydrologic Response in the northeast and a reduction in the subbasins in the southern region.

By normalizing fluvial water flow by rainfall, Hydrologic Response brings direct and comparable information for managing hydrological basins.
5. REFERENCES

Near real time detection of deforestation in the Brazilian Amazon using MODIS imagery

Yosio E. Shimabukuro; Valdete Duarte; Liana O. Anderson; Dalton M. Valeriano; Egidio Arai; Ramon M. de Freitas; Bernardo F. T. Rudorff; Maurício A. Moreira

Instituto Nacional de Pesquisas Espaciais (INPE)
Av. dos Astronautas, 1758, São José dos Campos, SP, 12227-010, Brasil
E-mail: {yosio, valdete, liana, dalton, egidio, ramon, bernardo, mauricio}@dsr.inpe.br

ABSTRACT
The objective of this paper is to provide near real time information about deforestation detection (DETER) in the entire Brazilian Amazon using MODIS high temporal resolution images. It is part of the operational deforestation monitoring project to estimate the annual deforestation rate in the Brazilian Amazon (PRODES). A rapid deforestation detection method was designed to support land use policies in this region. In order to evaluate the proposed method a test site was selected covering a Landsat ETM+ scene (227/68) located in Mato Grosso State. For this purpose a multitemporal series of MODIS surface reflectance images (MOD09) and the corresponding ETM+ images from June to October 2002 were analyzed. It was found that small deforested areas (lower than 15 ha) were detected by MODIS images with lower accuracy when compared with ETM+ images. As the deforested areas increase MODIS and ETM+ results tend to converge. This procedure showed to be adequate to operationally detect and monitor deforested areas and has been used since 2004 as part of a government plan to control the Amazon deforestation.

Keywords: Deforestation; Brazilian Amazon; change detection; MODIS; spectral mixing model; fraction images.

Detecção em tempo quase real de desflorestamento na Amazônia brasileira utilizando imagens MODIS

RESUMO
O objetivo deste artigo é fornecer informação sobre a detecção em tempo real da área desflorestada (DETER - Detecção em Tempo Real do Desflorestamento na Amazônia Brasileira) utilizando imagens do MODIS de alta resolução temporal. O DETER é parte do projeto operacional que estima a taxa anual do desflorestamento na Amazônia Brasileira (PRODES - Projeto de Monitoramento do Desflorestamento na Amazônia). Um método para detecção rápida do desflorestamento foi delineado para dar suporte à fiscalização do uso da terra na região. A fim de avaliar o método proposto foi selecionada uma área teste que cobre uma cena do Landsat ETM+ (227/68) localizada no Estado do Mato Grosso. Para este propósito uma série multitemporal de imagens refletância de superfície do MODIS (MOD09) e de imagens ETM+ correspondentes ao período de junho a outubro de 2002 foi analisada. Foi verificado que pequenas áreas de desflorestamento (menores do que 15 ha) foram detectadas pelas imagens MODIS com menor acurácia quando comparado com as imagens do ETM+. À medida que as áreas desflorestadas aumentam os resultados do MODIS e do ETM+ tendem a convergir. Este procedimento mostrou ser adequado para detectar e monitorar
operacionalmente as áreas desflorestadas e vem sendo utilizado pelo governo desde 2004 como parte do Plano de Ação para a Prevenção e Controle do Desmatamento na Amazônia Brasileira.

Palavras-chave: Desflorestamento; Amazônia Brasileira; detecção de mudança; MODIS; modelo de mistura espectral; imagens fração.

1. INTRODUCTION

Earth observation satellite images are commonly used to monitor land use and land cover changes to support environmental management policies and to assess global change processes (Townshend et al., 1991; DeFries et al., 1998; Bartholomé; Belward, 2005). Steady progress in space technology over the past decades continues to improve and increase remote sensing applications for a better understanding of Earth’s dynamic cycles and the influence of human activities on the environment. One example of space technology progress is the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard of Terra and Aqua platforms launched, by NASA (National Aeronautics and Space Administration) in December 1999 and May 2002, respectively. The MODIS sensor was especially designed to allow frequent and accurate monitoring of Earth surface dynamic processes through the improvement of sensor spatial, spectral, temporal and radiometric characteristics of its precursor the AVHRR (Advanced Very High Resolution Radiometer) sensor on board of the TIROS-NOAA series of satellites since 1978 (Justice et al., 2002). Several geolocated products are generated from the MODIS sensor including the surface reflectance image (MOD09) that is mainly used for land surface analysis (Justice et al., 2002). This product is an estimate of the surface spectral reflectance as it would have been measured at ground level considering that there were no atmospheric scattering or absorption. This estimate is attained through the application of a MODIS atmospheric correction algorithm (Vermote et al., 2002).

The use of moderate spatial resolution (e.g. 250 m) or low spatial resolution (e.g. 1 km) sensor data implies in the so called “mixture problem”, which means that the pixel value is a mixture of reflectance from different components within the pixel. Several techniques such as modeling and empirical estimations have been applied to depict subpixel heterogeneity in land cover from remotely sensed data (DeFries et al., 2000). Fraction images, derived from a Linear Spectral Mixing Model are an alternative approach to enhance the information of each component and to reduce image data dimensionality for digital image analysis and interpretation (Aguiar et al., 1999). These fraction images obtained from different remotely sensed data have been used to map vegetation cover in Amazônia (Aguiar et al., 1995), to monitor deforestation (Shimabukuro et al., 1998), land cover change (Carreiras et al., 2002), and vegetation classification (DeFries et al., 2000).

The procedure using the Landsat fraction images has been used operationally in the deforestation monitoring project (PRODES) to estimate the annual deforestation rate in the Brazilian Amazon which is carried out by the National Institute for Space Research (INPE, 2002). Since the PRODES information is obtained using low temporal resolution images (16 days, Landsat) restricting the acquisition of frequent cloud free image it is not possible to monitor the fast land cover changes that is required for official control of deforestation activities. Therefore, it is necessary to have an efficient and operational procedure to monitor the dynamic of the deforestation activity. Then, the objective of this paper is to provide near real time information about deforestation detection in the entire Brazilian Amazon using the MODIS high temporal resolution images.
2. MATERIAL AND METHODS

2.1. Study Area

The study area for the DETER project is the entire Brazilian Amazon (Figure 1). In order to evaluate and validate the present procedure a test site in Mato Grosso State corresponding to a Landsat ETM+ scene (Path 227/Row 68) was selected (Figure 1). Eight cloud free ETM+ and MODIS images were concomitantly acquired during the critical deforestation period of 2002 (June through October). This test site might not be representative in terms of deforestation pattern for the entire Brazilian Amazon. However, it is located within a region of different vegetation type classes and various sizes of deforestation. Furthermore, the test site is within a region that achieved the highest deforestation rate in the year 2002 (INPE, 2002; Anderson et al., 2005). The main drivers of new deforestation activities are the increase of agricultural projects, mainly soybean plantation, cattle raising, and industrial logging that often do not respect the forest protection laws (Anderson et al., 2005).

2.2. Near Real Time Deforestation Detection Procedure

The procedure to detect deforestation areas in near real time with MODIS images is based on the PRODES project that uses Landsat Thematic Mapper (TM) data. The first step of this procedure consists on the application of a Linear Spectral Mixing Model to generate the fraction images of vegetation, soil, and shade. The next step is the image segmentation followed by an unsupervised classification by region. Finally, a manual edition of the unsupervised classification is performed on the computer screen (Shimabukuro et al., 1998).

a) Linear Spectral Mixing Model: is the image processing algorithm that generates the fraction images with the proportion of each component (vegetation, soil, and shade) inside the pixel which is estimated by minimizing the sum of squares of the errors. The proportion values must be nonnegative, and they also must add to unity (Shimabukuro; Smith, 1991). The model can be expressed as Equation 1 (Aguiar et al., 1999):

$$ r_i = \sum_{j=1}^{n} (a_{ij}x_j) + e_i $$

where:
- i= 1, ..., m (number of spectral bands);
- j=1, ..., n (number of components);
- r_i= spectral reflectance of the i^{th} spectral band of a pixel which contains one or more components;
- a_{ij}= known spectral reflectance of the jth component within the pixel on the i^{th} spectral band;
- x_j= proportion value of the j^{th} component within the pixel; and
- e_i= error for the i^{th} spectral band.

b) Image segmentation: is the technique to segment the image in homogeneous regions by defining two thresholds: similarity and area. Similarity is the minimum threshold for which two adjacent areas are considered similar and grouped into one region and area is the minimum size given by the number of pixels to individualize one region (Bins et al., 1996).

c) Unsupervised classification by region: is performed using the ISOSEG classifier (Bins et al., 1993). This algorithm uses the covariance matrix and mean vector of the regions to estimate the center of each class. The acceptance threshold which is the maximum Mahalanobis distance is used to define if the pixel belongs or not to a specific class.

d) Manual edition: is performed to reduce the commission and omission errors increasing the map accuracy (Almeida Filho; Shimabukuro, 2002). It is necessary to perform this laborious task due to errors in the digital image classification and it is highly dependent on the interpreter experience.
2.3. Evaluation and Validation

To evaluate the near real time deforestation detection proposed procedure a multitemporal series of MODIS surface reflectance images (MOD09) and the corresponding ETM+ images from June to October 2002 were analyzed (Anderson et al., 2005). The eight Landsat ETM+ images were registered and radiometrically rectified (Justice et al., 2002) for the temporal land cover change analysis (Lillesand; Kiefer, 1994).

The Linear Spectral Mixing Model (LSMM) was applied separately for both MODIS and ETM+ datasets using 3 endmembers selected directly from the images: vegetation, soil, and shade. For the MODIS dataset seven spectral bands were used: blue (470 nm), green (555 nm), red (648 nm), near infrared (858 nm) and middle infrared (1240 nm, 1640 nm, and 2130 nm). The two first bands have 250 m of spatial resolution while the other five bands have 500 m of spatial resolution which were resampled to 250 m. For the ETM+ dataset all bands except the thermal band were used. The resulting soil fraction images highlight the contrast between forested and clear cut areas being the primary source of information in this study.
A single mask of deforested areas prior to 2002, for both dataset (MODIS and ETM+), was obtained from the PRODES project for the year of 2001. The detection procedure was performed starting with the image of Julian day 166 (15 June) and followed by the images of Julian days: 182 (01 July), 198 (17 July), 214 (02 August), 230 (18 August), 246 (03 September), 262 (19 September), and 278 (05 October). The validation of the deforestation detection using MODIS was performed by comparing this result with both deforestation detected on the corresponding Landsat scenes and field work.

2.4. DETER – Operational Procedure

The described procedure was applied to detect deforested areas in the year of 2004 for the entire Brazilian Amazon (DETER). For this, a mask of old deforestation (prior to 2003) and non-forested areas was produced. The information from the PRODES for the year 2003 was matched with the MODIS image mosaic of 2003 in order to separate the remaining primary forest cover over which the new deforested areas in 2004 should be detected. This detection was performed using a multitemporal sequence of almost cloud free selected MODIS images acquired on 07 May, 21 May, 08 June, 29 June, 29 July, and 25 August 2004.

To exemplify the operational procedure of the DETER project a region in Mato Grosso State using two MODIS images acquired on 07 and 21 May 2004 was selected (Figure 2). Figure 2a shows the PRODES mask over the MODIS image of August 2003. This mask prevents the detection of old deforested areas over the first image of the multitemporal MODIS dataset. The mask shows old deforested areas in yellow and non-forested areas in pink, as defined by the PRODES project (INPE, 2002). Figure 2b shows the same mask over the first MODIS image acquired in 2004 (07 May 2004) where the new deforested areas between August 2003 and 07 May 2004 appear in magenta, contrasting with the green appearance of forested cover in the RGB colour composite (MIR, NIR and Red). Figure 2c shows in black these new deforested areas that were classified using the previously described method. To continue the process of detection of deforested areas the new mask (yellow plus black) was overlaid on the subsequent MODIS image acquired on 21 May 2004. Then the new deforested areas were classified on this image and are depicted in red on Figure 2d. This sequence continues until the last cloud free MODIS image was analyzed in 2004 (25 August).

A field work was carried out in July 2004 in central Mato Grosso State to verify the agreement between the deforested areas detected on the MODIS images with this procedure and the observed deforested areas in the field. The observed areas were selected based on the extensive network of unpaved roads in central Mato Grosso. To accurately locate these areas in the field Landsat/TM images and GPS were used.
3. RESULTS AND DISCUSSION

3.1. Evaluation and Validation

Figure 3 presents the number of deforested areas detected by both MODIS and ETM+ sensors over the test site (Figure 1). The deforested areas were stratified according to their size into three classes: (a) less than 15 ha; (b) between 15 and 50 ha; and (c) between 50 and 100 ha. Figure 3a indicates that small deforested areas (less than 15 ha) were very difficult to be detected with MODIS images. For areas between 15 and 50 ha, as illustrated in Figure 3b, the MODIS images detected deforested areas with low accuracy. However, for areas greater than 50 ha the MODIS images detected deforested areas as well as the Landsat images as shown in Figure 3c. Therefore, as the size of the deforested areas increases MODIS and ETM+ results tend to converge. But it is important to point out that the objective of this procedure is to detect near real time deforested areas and not to provide a quantitative annual evaluation of deforestation rate which is performed by the PRODES project. It should be pointed out that the area estimation figures were used to facilitate the evaluation of the
MODIS results as presented in Figure 3. Therefore, the deforested area estimation with MODIS data should be used with caution.

Figure 3. Number of deforested areas, detected by both MODIS and ETM+ sensors, stratified into three size classes: (a) less than 15 ha; (b) between 15 and 50 ha; and (c) between 50 and 100 ha.

Figure 4 shows the spatial distribution of the deforested areas sequentially detected by the MODIS multitemporal dataset in the test site (Figure 1). This multitemporal analysis was successfully performed due to the high geometric quality of the MODIS dataset.
3.2. DETER – Operational Procedure

Based on the results obtained for the test site and considering the objective of the DETER project the present procedure was applied for the entire Brazilian Amazon region using a sequence of multitemporal MODIS images acquired during the year of 2004.

Table 1 shows the deforested areas detected from August 2003 (base date) through 25 August 2004 for each State in the Brazilian Amazon. As can be observed in Table 1 the deforested areas for the first image (07 May 2004) present 1,573.3 km2 which correspond to the deforested area between the period of August 2003 and 07 May 2004. Major deforestation was observed in Mato Grosso State representing almost 50% (10,151.7 km2) of the entire deforestation in the Brazilian Amazon over the analyzed period. Although a high increase in deforested area is observed for the period between 08 and 22 June (14 days) this estimation should be analyzed with caution due to the fact that the deforested areas are detected only under cloud free conditions. This means that some areas were detected only on specific dates due to previous cloud cover.

Some detected deforested areas were visited during field work in Mato Grosso State where most deforestation occurred in 2004. It was noticed that fields greater than two pixels of MODIS were detected with high accuracy confirming the feasibility of the proposed procedure.

Table 1. Deforested areas in km2 detected in the August 2003 to August 2004 time period.

<table>
<thead>
<tr>
<th>STATES</th>
<th>May 07</th>
<th>May 21</th>
<th>June 08</th>
<th>June 22</th>
<th>July 29</th>
<th>August 25</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acre</td>
<td>0.0</td>
<td>0.0</td>
<td>9.9</td>
<td>0.0</td>
<td>112.0</td>
<td>334.5</td>
<td>456.4</td>
</tr>
<tr>
<td>Amapá</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Amazonas</td>
<td>0.0</td>
<td>0.0</td>
<td>13.0</td>
<td>367.7</td>
<td>335.3</td>
<td>177.9</td>
<td>893.9</td>
</tr>
<tr>
<td>Maranhão</td>
<td>1.3</td>
<td>0.0</td>
<td>0.0</td>
<td>2.7</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Mato Grosso</td>
<td>1,471.9</td>
<td>1,679.4</td>
<td>1,158.5</td>
<td>3,641.2</td>
<td>878.3</td>
<td>1,322.4</td>
<td>10,151.7</td>
</tr>
<tr>
<td>Pará</td>
<td>97.9</td>
<td>168.8</td>
<td>105.6</td>
<td>4,054.7</td>
<td>1,828.1</td>
<td>560.8</td>
<td>6,815.9</td>
</tr>
<tr>
<td>Rondônia</td>
<td>0.0</td>
<td>0.0</td>
<td>133.0</td>
<td>529.8</td>
<td>1,260.0</td>
<td>676.6</td>
<td>2,599.4</td>
</tr>
<tr>
<td>Roraima</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tocantins</td>
<td>2.2</td>
<td>1.6</td>
<td>0.0</td>
<td>64.2</td>
<td>0.0</td>
<td>0.0</td>
<td>68.0</td>
</tr>
<tr>
<td>Amazônia</td>
<td>1,573.3</td>
<td>1,849.8</td>
<td>1,420.0</td>
<td>8,660.3</td>
<td>4,413.7</td>
<td>3,072.2</td>
<td>20,989.3</td>
</tr>
</tbody>
</table>

The spatial distribution of the detected deforested areas presented in Table 1 is available and can be accessed through the Internet site (http://www.obt.inpe.br/deter/). Since this information is into a GIS the detection of deforested areas in the Brazilian Amazon can be obtained by State, municipality, and others. The primary use of this information is to monitor the deforestation activities. This procedure showed to be adequate to detect and monitor deforested areas in near real time and has been continuously used on an operational base since 2004 being part of a government plan to control the Amazon deforestation (Shimabukuro et al., 2005).

4. CONCLUSIONS

The MODIS sensor with moderate spatial resolution, high geometric quality and daily observation is feasible for detection of near real time deforestation in the Brazilian Amazon. Small deforested areas (lower than 15 ha) were detected by MODIS images with lower accuracy when compared with ETM+ images. However, this procedure showed to be adequate to operationally detect deforested areas in near real time and has been used since 2004 as part of a government plan to control the Amazon deforestation.

5. ACKNOWLEDGMENTS

This research was partially supported by FAPESP grant (Proc. 2003/01727-0). The authors also like to thank the LBA-LC 22 for the field work support.

6. REFERENCES

Efeitos da irrigação e do nitrogênio na produtividade do trigo

Bernardo Friedrich Theodor Rudorff¹; Mauricio Alves Moreira¹; Marcelo dos Santos Targa²; José Guilherme de Freitas³

¹Instituto Nacional de Pesquisas Espaciais (INPE), Divisão de Sensoriamento Remoto
Av. dos Astronautas, 1.758, CEP 12.227-010, São José dos Campos, SP
E-mail: {bernardo, mauricio}@ltid.inpe.br
²Universidade de Taubaté (UNITAU), Departamento de Ciências Agrárias
Estr. Dr. José Luiz Cembranelli, 5.000, CEP 12081-010, Taubaté, SP
E-mail: mtarga@agro.unitau.br
³Instituto Agronômico de Campinas (IAC)
Av. Barão de Itapura, 1.481, Caixa Postal 28, 13020-902, Campinas, SP
E-mail: jfreitas@iac.sp.gov.br

RESUMO

Palavras-chave: experimento agronômico; Vale do Paraíba; agricultura; cultivares de trigo.

Irrigation and nitrogen effects on wheat grain yield

ABSTRACT

Two agronomic experiments with wheat crop were conducted during the period of May through October of 1999 and 2000 at the experimental site of the University of Taubaté, Taubaté, São Paulo State, Brazil. The objective of this work was to evaluate the effect of different levels of irrigation and nitrogen on grain yield of two wheat cultivars. The work also intended to present the feasibility of this agriculture activity during the winter crop season in the Paraíba Valley region of São Paulo State. The experimental design allowed simulating different wheat crop growth conditions in the field in terms of the interactions among irrigation, cultivar and nitrogen factors. Results showed no significant interaction among the three factors for the analyzed agronomic characteristics. Interaction of irrigation and nitrogen, for grain yield and biomass, was observed only in 1999. Soil fertility was improved in 2000 with a positive effect on grain yield. Irrigation had a significant impact on grain yield.
indicating that wheat crop needs water supply for a profitable production in the Paraíba Valley region. Water balance is recommended for efficient irrigation.

Keywords: agronomic experiments; Paraíba Valley; agriculture; wheat cultivars.

1. INTRODUÇÃO

No Vale do Paraíba, a cultura do trigo pode ser uma opção de cultivo para o período março-setembro em sucessão às culturas tradicionalmente cultivadas no verão. Conforme Felicio et al. (2001), o cultivo de trigo no Estado de São Paulo, até o início da década de 80, instalava-se no Vale do Paranapanema e na região sul do estado, onde o trigo era semeado em sucessão à soja e cultivado em condições de sequeiro. Contudo, em regiões do Brasil como o norte e oeste do Paraná, sudeste de São Paulo e sul do Mato Grosso do Sul, a deficiência hídrica é mais frequente, e pode ocasionar perdas totais em determinados anos (Embrapa, 1981). Por outro lado, nessas regiões, bem como no Brasil Central, onde as precipitações são insuficientes para o desenvolvimento normal da cultura, alguns experimentos mostram resposta positiva da cultura do trigo à irrigação (Ferreira et al., 1973; Silva; Leite, 1975; Silva, 1978; Frizzone et al., 1985). No Estado de São Paulo, especificamente a partir de 1982, com o estabelecimento da irrigação, a deficiência hídrica deixou de ser uma limitação para o cultivo do trigo durante o inverno paulista.

Ao analisar os valores médios de uma série temporal de dados entre 1982 e 1992 de um posto meteorológico situado no município de Taubaté, SP, Fisch (1995) observou que a baixa demanda evapotranspirativa das plantas durante a estação seca no inverno pode ser suprida pela água retida no solo nos meses de maiores precipitações. Contudo, os valores de precipitação dessa série temporal de dados apresentam uma significativa variação interanual, em especial nos meses mais secos, levando a concluir que o déficit hídrico ocorre com frequência apesar da baixa demanda evapotranspirativa.

Níveis adequados de irrigação e adubação nitrogenada que proporcionem um sinergismo desses dois fatores sobre a produção do trigo ainda necessitam de estudos mais refinados a fim de fornecer ao agricultor práticas de manejo adequadas para otimizar o uso dos recursos e obter uma produção rentável (Frizzone et al., 1996). Além disso, devem ser observados cuidados na aplicação do adubo nitrogenado e da irrigação a fim de maximizar o uso desses recursos (Boaretto et al., 2000). Em experimentos a campo e em casa de vegetação foi verificado que o estresse hídrico e a adubação nitrogenada tiveram uma interação negativa sobre a produção de trigo (Camargo, 1976; Parameswaran et al., 1984), pois o principal mecanismo de absorção de nitrogênio é o fluxo de massa, ou seja, quanto mais água for absorvida pelas plantas de trigo, mais nitrogênio da solução do solo será absorvido (Epstein, 1975). Rodrigues et al. (1998), estudando o efeito da deficiência hídrica na produtividade de trigo, concluíram que o número de grãos por espiga é o componente da produtividade mais afetado pela deficiência hídrica.

O presente estudo tem por objetivo analisar o efeito interativo de diferentes níveis de irrigação e doses de nitrogênio sobre a produtividade de grãos de dois cultivares de trigo. O estudo também tem a finalidade de verificar se o cultivo do trigo é viável na entressafra na região do Vale do Paraíba para permitir uma atividade agrícola rentável por meio do uso otimizado dos recursos naturais e assim minimizar o impacto ambiental.
2. MATERIAL E MÉTODOS

Os experimentos agronômicos a campo com a cultura do trigo foram conduzidos durante o período de maio a outubro de 1999 e 2000 na área experimental do Departamento de Ciências Agrárias da Universidade de Taubaté (UNITAU), em Taubaté, São Paulo, com as seguintes coordenadas geográficas: latitude de 22° 54' S, longitude de 45° 33' W e altitude de 600 m. O clima da região caracteriza-se por ser quente e úmido no verão e frio e seco no inverno. O total de chuvas no verão, comumente, excede 200 mm com chuvas quase que diárias. Já no inverno, a precipitação é bem reduzida e nos meses de junho a agosto a precipitação é frequentemente inferior a 20 mm (Fisch, 1995). O ano hidrológico inicia-se em agosto e termina em julho do ano seguinte, com 42% da precipitação ocorrendo nos meses de dezembro a fevereiro. A precipitação média anual para o período de 1983 a 1991 foi de 1.350 mm (Fisch, 1995).

O solo da área em estudo corresponde ao Latossolo Vermelho-Amarelo (Embrapa, 1999) e as suas características químicas e físico-hídricas encontram-se nas Tabelas 1 e 2, respectivamente. A capacidade máxima de armazenamento do solo (30 mm) foi calculada de acordo com as propriedades físico-hídricas do solo para a profundidade de 25 cm. Os valores de umidade na Capacidade de Campo (CC = 0,34 cm³ cm⁻³), Ponto de Murchamento Permanente (PMP = 0,218 cm³ cm⁻³) constantes da Tabela 2, foram determinados na curva de retenção da água no solo (Figura 1) para os potenciais de 100 cca (cm de coluna de água) e 15.000 cca, respectivamente. A reserva de água no solo foi calculada em 60% da capacidade máxima de armazenamento (Doorembos; Kassam, 1994). Os valores de coeficiente de cultura (kc) para cálculo da evapotranspiração da cultura do trigo para os diferentes estádios foram baseados em dados recomendados pela FAO (Doorembos; Kassam, 1994) e encontram-se na Tabela 3. Para o Coeficiente de Tanque Classe A (kp) foi adotado o valor de 0,75 com base nos dados do posto meteorológico da UNITAU, localizado ao lado da área experimental.

<table>
<thead>
<tr>
<th>Ano</th>
<th>pH</th>
<th>MO</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>H+Al</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CaCl₂</td>
<td>g dm⁻³</td>
<td>mg dm⁻³</td>
<td>--------------</td>
<td>mmol dm⁻³</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>4,4</td>
<td>18,3</td>
<td>9,3</td>
<td>2,8</td>
<td>14,7</td>
<td>5,2</td>
<td>39,2</td>
</tr>
<tr>
<td>2000</td>
<td>5,4</td>
<td>18,0</td>
<td>12,0</td>
<td>4,5</td>
<td>23,0</td>
<td>14,0</td>
<td>24,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CC</th>
<th>PMP</th>
<th>p</th>
<th>ds</th>
<th>dp</th>
<th>VIB</th>
<th>Areia</th>
<th>Silte</th>
<th>Argila</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,34</td>
<td>0,218</td>
<td>0,556</td>
<td>1,4</td>
<td>2,7</td>
<td>7,2</td>
<td>635</td>
<td>182</td>
<td>183</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kc</th>
<th>0,3</th>
<th>0,7</th>
<th>1,1</th>
<th>0,7</th>
<th>0,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Período (dias)</td>
<td>1 - 17</td>
<td>18 - 58</td>
<td>58 - 88</td>
<td>89 - 122</td>
<td>123 - 134</td>
</tr>
</tbody>
</table>
O delineamento estatístico foi de blocos ao acaso, em esquema de parcelas sub subdivididas, com 4 repetições. Os tratamentos de irrigação foram aplicados nas parcelas de trigo de acordo com o seguinte protocolo: 100%, 50% e 25% da água evapotranspirada. Para o cálculo da lâmina de água a ser reposta nas parcelas, em função da evapotranspiração da cultura do trigo, empregou-se o manejo de irrigação recomendado pelo Boletim Técnico 167 (IAC, 1999) que tem por base a evaporação do tanque classe A. Para a decisão do momento de irrigação e da quantidade de água a ser aplicada foi feito um balanço hídrico diário. O sistema de irrigação foi instalado a cada ano logo após a semeadura e até o período de ≅40 dias após emergência foi mantida a demanda de 100% da evapotranspiração da cultura para todas as parcelas, irrigando-se toda vez que cerca de 23% da capacidade de armazenamento do solo fosse consumido. Após, as parcelas com 50% e 25% da água evapotranspirada foram cobertas com lonas de plástico (Figura 2) durante os eventos de precipitação. A irrigação por aspersão foi aplicada com aspersor do tipo setorial de modo a atingir cada parcela especifica, sempre no sentido de repor a água evapotranspirada no período, determinando-se a lâmina a ser reposta para que no tratamento de 100% o armazenamento de água no solo voltasse a 30 mm. A partir daí foram calculadas e aplicadas as lâminas correspondentes a 50% e 25% da evapotranspiração. Nesse período, a irrigação foi feita toda vez que a água equivalente a 40% da capacidade de armazenamento do solo fosse consumida.

Os cultivares IAC-289 e IAC-24 foram semeados nas sub-parcelas do experimento nos dias 1º de maio de 1999 e 29 de maio de 2000. Os tratamentos de nitrogênio (N) foram aplicados nas sub sub-parcelas em quatro doses de N (0, 60, 90 e 120 kg de N ha⁻¹), utilizando-se uréia como fonte de N. Um terço do N foi aplicado no sulco de semeadura junto com os nutrientes P, K, Zn e B e o restante no início do estádio de alongamento (≅40 dias após a emergência das plantas, segundo recomendam Camargo et al. (1988).

A semeadura foi realizada por meio da semeadora de parcela de trigo do Centro de Plantas Graníferas do Instituto Agronômico de Campinas. O espaçamento foi de 17 cm entre linhas, com aproximadamente 80 sementes viáveis por metro linear. A adubação de macro e micronutrientes teve por base a análise de solo da área experimental e a tabela de recomendação de adubação para a cultura do trigo no Estado de São Paulo (IAC, 1999). Não foi necessária a aplicação de defensivos agrícolas. No levantamento da fertilidade e da física do solo foi verificado que não havia a necessidade de se realizar uma subsolagem. A
descrição dos estádios fenológicos do trigo foi feita utilizando-se a escala decimal de crescimento dos cereais segundo Zadoks et al. (1974) citado em Scheeren (1986). A colheita do trigo foi realizada na parte central de cada unidade experimental, desprezando-se duas linhas de cada lado e 0,5 m no comprimento, para evitar o efeito de bordadura. Os valores de produtividade de grãos, fitomassa seca da parte aérea, índice de colheita, massa de mil grãos, número de sementes por espiga, tamanho de espigas, número de espiguetas desenvolvidas e não desenvolvidas foram analisados utilizando-se procedimentos de análise de variância adequados para um delineamento experimental em blocos com sub-sub-parcelas. As diferenças entre tratamentos foram avaliadas pelo teste estatístico de Duncan ($\alpha=0,05$).

3. RESULTADOS E DISCUSSÃO

As análises estatísticas das características agronômicas para as safras de 1999 e 2000 estão apresentadas nas Tabelas 4 e 5, respectivamente. Nota-se nessas tabelas que não houve efeito significativo ($\alpha \leq 0,05$) para a interação irrigação vs. cultivar vs. nitrogênio para qualquer uma das características analisadas. Apenas em 1999 (Tabela 4) foi observado um efeito significativo na produtividade de grãos e na fitomassa para a interação irrigação vs. nitrogênio. Isso indica que pelo menos um dos níveis de irrigação apresenta uma resposta diferenciada às doses de nitrogênio. Ainda em 1999, foi observado um efeito significativo na produtividade de grãos e na massa de 1.000 grãos para a interação cultivar vs. nitrogênio indicando que os dois cultivares apresentaram uma resposta diferenciada às doses de nitrogênio (Tabela 4).

A irrigação teve efeito significativo sobre a produtividade de grãos e fitomassa nos dois anos safra (Tabelas 4 e 5). Em 1999, a irrigação teve efeito mais pronunciado do que em 2000 e a produtividade de grãos foi reduzida em 38,3% e 54,7% para os níveis de 50% e 25% da evapotranspiração, respectivamente (Tabela 4). Também houve diferença significativa entre esses dois níveis de irrigação, havendo uma redução na produtividade de grãos de 26,6% para o nível de irrigação de 25% em relação ao nível de 50% da evapotranspiração (Tabela 4). Na safra de 2000, a produtividade de grãos foi reduzida em 33,5% e 37,4% para os níveis de irrigação de 50% e 25% da evapotranspiração, respectivamente (Tabela 5). Contudo não foi observada uma diferença significativa para produtividade de grãos entre os níveis de 50% e 25% da evapotranspiração (Tabela 5).

A redução na produtividade de grãos em função da irrigação observada nos dois anos safra não pode ser explicada pelas diversas características agronômicas medidas neste estudo.
e apresentadas nas Tabelas 4 e 5. Por exemplo, em 1999, a massa de 1.000 grãos foi significativamente reduzida para o nível de irrigação de 25% da evapotranspiração, enquanto que a produtividade de grãos foi reduzida tanto a 25% quanto a 50% da evapotranspiração (Tabela 4). Outra característica, como tamanho da espiga, apresenta diferença significativa apenas em 1999. No ano safra de 1999, nota-se que o número de espiguetas desenvolvidas foi significativamente reduzido quando as plantas estiveram submetidas aos níveis de irrigação de 50% e 25% da evapotranspiração, explicando parte da redução observada na produtividade de grãos (Tabela 4).

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS AGRONÔMICAS</th>
<th>FATORES</th>
<th>Produtividade (g m⁻²)</th>
<th>Fito-massa (g m⁻²)</th>
<th>Índice de Colheita (%)</th>
<th>Massa mil grãos (g)</th>
<th>grãos espiga⁻¹ (N°)</th>
<th>Tamanho espiga (cm)</th>
<th>Espigeta desenvol. (N°)</th>
<th>Espigeta não desenvol. (N°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigação</td>
<td>Cultivar</td>
<td>Nitrogênio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>-</td>
<td>-</td>
<td>354,3 a</td>
<td>785,1 a</td>
<td>45,4</td>
<td>40,1 a</td>
<td>25,4 a</td>
<td>6,5 a</td>
<td>13,8 a</td>
</tr>
<tr>
<td>50%</td>
<td>-</td>
<td>-</td>
<td>218,5 b</td>
<td>468,9 b</td>
<td>47,3</td>
<td>39,5 a</td>
<td>18,3 b</td>
<td>5,8 b</td>
<td>11,4 ab</td>
</tr>
<tr>
<td>25%</td>
<td>-</td>
<td>-</td>
<td>160,4 c</td>
<td>342,4 c</td>
<td>47,1</td>
<td>33,8 b</td>
<td>15,0 b</td>
<td>5,4 b</td>
<td>10,5 b</td>
</tr>
<tr>
<td>-</td>
<td>IAC-24</td>
<td>-</td>
<td>235,6</td>
<td>535,6</td>
<td>44,2 b</td>
<td>39,1</td>
<td>19,6</td>
<td>6,0</td>
<td>11,9</td>
</tr>
<tr>
<td>-</td>
<td>IAC-289</td>
<td>-</td>
<td>243,3</td>
<td>507,9</td>
<td>48,9 a</td>
<td>36,5</td>
<td>19,8</td>
<td>5,9</td>
<td>11,9</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0 kg.ha⁻¹</td>
<td>207,9 c</td>
<td>458,4 c</td>
<td>45,2 b</td>
<td>7,5</td>
<td>20,3</td>
<td>6,1</td>
<td>12,0</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>60 kg.ha⁻¹</td>
<td>240,0 b</td>
<td>511,8 b</td>
<td>48,3 a</td>
<td>38,6</td>
<td>19,4</td>
<td>5,9</td>
<td>11,9</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>90 kg.ha⁻¹</td>
<td>242,7 b</td>
<td>527,0 b</td>
<td>47,1 ab</td>
<td>37,7</td>
<td>19,8</td>
<td>6,0</td>
<td>12,1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>120 kg.ha⁻¹</td>
<td>267,7 a</td>
<td>587,4 a</td>
<td>46,1 ab</td>
<td>37,4</td>
<td>19,2</td>
<td>5,8</td>
<td>11,7</td>
</tr>
</tbody>
</table>

Análise de variância, valores de F U

<table>
<thead>
<tr>
<th>Irrigação</th>
<th>35,3**</th>
<th>43,1**</th>
<th>2,8 NS</th>
<th>112,1**</th>
<th>25,5**</th>
<th>9,8*</th>
<th>4,1 NS</th>
<th>20,3**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivar</td>
<td>0,1 NS</td>
<td>4,2 NS</td>
<td>29,9**</td>
<td>2,7 NS</td>
<td>0,2 NS</td>
<td>0,0 NS</td>
<td>0,0 NS</td>
<td>1,8 NS</td>
</tr>
<tr>
<td>Nitrogênio</td>
<td>13,6**</td>
<td>14,4**</td>
<td>1,8 NS</td>
<td>0,2 NS</td>
<td>0,4 NS</td>
<td>1,1 NS</td>
<td>0,5 NS</td>
<td>1,4 NS</td>
</tr>
<tr>
<td>Irrigação x Cultivar</td>
<td>2,3 NS</td>
<td>1,5 NS</td>
<td>0,7 NS</td>
<td>0,3 NS</td>
<td>5,2*</td>
<td>3,1 NS</td>
<td>7,4*</td>
<td>3,3 NS</td>
</tr>
<tr>
<td>Irrigação x Nitrogênio</td>
<td>2,6*</td>
<td>5,2**</td>
<td>0,9 NS</td>
<td>0,7 NS</td>
<td>0,9 NS</td>
<td>0,8 NS</td>
<td>2,0 NS</td>
<td>1,2 NS</td>
</tr>
<tr>
<td>Cultivar x Nitrogênio</td>
<td>2,8*</td>
<td>1,5 NS</td>
<td>0,8 NS</td>
<td>2,9*</td>
<td>1,6 NS</td>
<td>2,1 NS</td>
<td>1,7 NS</td>
<td>0,3 NS</td>
</tr>
<tr>
<td>Irrigação x Cultivar x Nitrogênio</td>
<td>0,8 NS</td>
<td>0,4 NS</td>
<td>0,1 NS</td>
<td>1,3 NS</td>
<td>1,5 NS</td>
<td>0,6 NS</td>
<td>0,6 NS</td>
<td>1,9 NS</td>
</tr>
<tr>
<td>Coeficiente de Variação, %</td>
<td>13,3</td>
<td>12,9</td>
<td>9,6</td>
<td>13,8</td>
<td>18,6</td>
<td>8,6 NS</td>
<td>10,4</td>
<td>15,6</td>
</tr>
</tbody>
</table>

NS, não significativo no nível de P<0,05; *, **, significativo nos níveis de 0,05 e 0,01, respectivamente. Médias com letras iguais não diferem significativamente no nível de 5% pelo teste de Duncan.
Tabela 5. Efeitos dos fatores irrigação, cultivar e nitrogênio sobre as características agronômicas do trigo no ano de 2000.

<table>
<thead>
<tr>
<th>FATORES</th>
<th>Produtividade (g m²)</th>
<th>Fito-massa (g m²)</th>
<th>Índice de Colheita (%)</th>
<th>Massa mil grãos (g)</th>
<th>Grãos espiga¹ (N°)</th>
<th>Tamanho espiga (cm)</th>
<th>Espiguetas desenvol. (N°)</th>
<th>Espiguetas não desenvol. (N°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>-</td>
<td>-</td>
<td>413,6 a</td>
<td>813,0 a</td>
<td>51,0</td>
<td>38,8</td>
<td>29,9</td>
<td>143</td>
</tr>
<tr>
<td>50%</td>
<td>-</td>
<td>-</td>
<td>275,0 b</td>
<td>534,6 b</td>
<td>51,4</td>
<td>42,4</td>
<td>31,6</td>
<td>142</td>
</tr>
<tr>
<td>25%</td>
<td>-</td>
<td>-</td>
<td>258,8 b</td>
<td>513,6 b</td>
<td>50,4</td>
<td>38,7</td>
<td>33,8</td>
<td>147</td>
</tr>
<tr>
<td>- IAC-24</td>
<td>-</td>
<td>-</td>
<td>330,0 a</td>
<td>626,9</td>
<td>47,9 b</td>
<td>40,6</td>
<td>31,8</td>
<td>144</td>
</tr>
<tr>
<td>- IAC-289</td>
<td>-</td>
<td>-</td>
<td>301,6 b</td>
<td>613,9</td>
<td>53,9 a</td>
<td>39,4</td>
<td>31,8</td>
<td>144</td>
</tr>
<tr>
<td>- 0 kg ha⁻¹</td>
<td>-</td>
<td>-</td>
<td>310,4</td>
<td>605,5</td>
<td>51,4</td>
<td>40,7</td>
<td>32,0</td>
<td>142</td>
</tr>
<tr>
<td>- 60 kg ha⁻¹</td>
<td>-</td>
<td>-</td>
<td>320,9</td>
<td>627,6</td>
<td>50,8</td>
<td>39,0</td>
<td>31,8</td>
<td>145</td>
</tr>
<tr>
<td>- 90 kg ha⁻¹</td>
<td>-</td>
<td>-</td>
<td>307,2</td>
<td>614,4</td>
<td>50,3</td>
<td>39,9</td>
<td>31,2</td>
<td>142</td>
</tr>
<tr>
<td>- 120 kg ha⁻¹</td>
<td>-</td>
<td>-</td>
<td>324,5</td>
<td>634,0</td>
<td>51,3</td>
<td>40,3</td>
<td>32,0</td>
<td>146</td>
</tr>
</tbody>
</table>

Análise de variância, valores de F

<table>
<thead>
<tr>
<th>Irrigação</th>
<th>Cultivar</th>
<th>Nitrogênio</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- IAC-24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- IAC-289</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 0 kg ha⁻¹</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 60 kg ha⁻¹</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 90 kg ha⁻¹</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 120 kg ha⁻¹</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

NS, não significativo no nível de P≤0,05; *, **, significativo nos níveis de 0,05 e 0,01, respectivamente. Médias com letras iguais não diferem significativamente no nível de 5% pelo teste de Duncan.

Durante as estações de crescimento do trigo, as temperaturas médias máximas e mínimas foram de 11,0 ºC e 26,3 ºC em 1999 e de 8,8 ºC e 27,6 ºC em 2000, respectivamente. Isso indica que os anos foram muito semelhantes entre si no que se refere à temperatura. A principal diferença entre os anos foi a disponibilidade de água, conforme pode ser observado no balanço hídrico apresentado nas Figuras 3 e 4 para os anos de 1999 e 2000, respectivamente. A Figura 5 apresenta a síntese do balanço hídrico para os anos de 1999 e 2000. Na Figura 3, referente ao cultivo de 1999, observa-se que houve uma maior concentração de chuva até os 50 dias iniciais de cultivo, enquanto que no ano de 2000 (Figura 4) praticamente não ocorreu chuva na fase inicial do cultivo com a maior concentração de chuva durante os 50 dias finais do cultivo. Foi observado que não houve diferença significativa entre os tratamentos de irrigação de 50% e 25% da evapotranspiração em 2000, para nenhuma das características agronômicas; muito embora, a Figura 5 apresente diferenças no balanço hídrico para esses dois tratamentos. Isso pode ser atribuído ao fato de que durante os 40 dias iniciais, todas as parcelas receberam a mesma quantidade de água e quando elas foram submetidas aos tratamentos de irrigação o solo pode ter fornecido água de maior profundidade (Fisch, 1995). Somado a isso, a precipitação ocorrida nos 50 dias finais do
Figura 3. Balanço hídrico para os três tratamentos de irrigação (100%, 50% e 25% da evapotranspiração) da cultura trigo no ano de 1999.
cultivo pode ter afetado as parcelas com os tratamentos de 50% e 25% da evapotranspiração devido à falha na cobertura dessas parcelas com as lonas plásticas, permitindo alguma infiltração de água da chuva durante os eventos de precipitação em 2000.
Com base nos resultados observados nos dois anos do experimento, pode-se afirmar que a redução na disponibilidade de água para as plantas de trigo, para os níveis de 50% e 25% da evapotranspiração, reduz significativamente a produtividade de grãos. Observa-se ainda que de 1999 para 2000 houve um aumento na produtividade de grãos, fitomassa da parte aérea, índice de colheita, massa de 1.000 grãos, número de grãos por espiga, tamanho das espigas, número de espiguetas desenvolvidas, bem como uma redução no número de espiguetas não desenvolvidas. Todavia, em 2000 não houve um aumento significativo da produtividade de grãos quando se passa de 25% para 50% da evapotranspiração (Tabela 5). É importante salientar que até o período de \(\approx 40 \) dias após emergência foi mantida a demanda evaporativa de 100% para todas as parcelas, não havendo déficit de água no estádio próximo à floração.

Figura 5. Síntese do balanço hídrico da cultura do trigo para os níveis de reposição de água de 100, 50 e 25% da evapotranspiração da cultura para os anos de 1999 e 2000.

A diferença entre os cultivares aqui estudados não fica evidente quanto à produtividade de grãos uma vez que somente em 2000 o cultivar IAC-24 apresentou melhor desempenho quando comparado com o cultivar IAC-289. Moreira et al. (2005), num estudo comparativo entre genótipos de trigo também não observaram diferença na produtividade desses dois
cultivares. A adubação nitrogenada apresentou efeito significativo somente no ano de 1999, quando a produtividade de grãos foi aumentada em 15,4% e 28,8% para as doses de 60 kg.ha\(^{-1}\) e 120 kg.ha\(^{-1}\) de N, respectivamente.

Um aspecto interessante a ser destacado se refere à diferença nos valores de produtividade de grãos entre os anos 1999 e 2000 (Tabelas 4 e 5), quando foi observado um aumento de 16,7%, 25,8% e 61,3% na produtividade de grãos para as parcelas de trigo irrigado a 100%, 50% e 25% da evapotranspiração, respectivamente. Isso pode ser atribuído à melhoria nas características químicas do solo (Tabela 1) da área experimental realizada por meio de calagem e adubação corretiva, mostrando ainda que o maior benefício dessa melhoria sobre a produtividade de grãos, foi observado para os tratamentos com menor disponibilidade de água para a cultura.

4. CONCLUSÃO

No presente trabalho não foi observada uma interação significativa entre os fatores irrigação, cultivar e nitrogênio para qualquer uma das características analisadas. O efeito interativo entre irrigação e nitrogênio aparece apenas no ano de 1999, quando a produtividade e a fitomassa apresentaram efeito significativo para as doses de nitrogênio em função do nível de irrigação. A melhoria das características químicas do solo por meio de calagem e adubação corretiva aumentou significativamente a produtividade de grãos de trigo, particularmente, para os tratamentos com níveis de irrigação de 50% e 25% da evapotranspiração. A prática da irrigação se mostrou fundamental para obtenção de uma produtividade rentável da cultura do trigo na região do Vale do Paraíba durante o período seco da entressafra. O balanço hídrico é uma boa forma de racionalizar o uso da água na agricultura, contribuindo com a conservação ambiental.

5. AGRADECIMENTOS

À Fapesp (Fundação de Amparo à Pesquisa do Estado de São Paulo) pelo financiamento do projeto número 97/11075-7, que possibilitou a realização deste trabalho. Aos funcionários do Instituto Agronômico de Campinas, pelo apoio dado na condução do experimento, em especial os funcionários: José Norberto da Silva, Ismael dos Santos Ribeiro, Eurico Alves, Carlos Aparecido Fernandes e José Carlos de Andrade. Aos funcionários do Laboratório de Análise de Solo da Universidade de Agronomia de Taubaté (UNITAU), pela pronta colaboração nas análises físicas e químicas das amostras do solo da área experimental. Aos alunos do Departamento de Agronomia: José Flávio Corte e Leandro Massao Paes Aikawa pelo interesse, seriedade e dedicação na coleta e acompanhamento das análises dos dados dos experimentos.
6. REFERÊNCIAS

Caracterização climática e estudo de tendências nas séries temporais de temperatura do ar e precipitação em Taubaté (SP)
(doi:10.4136/ambi-agua.6)

Marcelo Theophilo Folhes¹; Gilberto Fisch²

¹Instituto Nacional de Pesquisas Espaciais – INPE
Caixa Postal 515 – 12201-970 – São José dos Campos-SP, Brasil
E-mail: folhes@dsr.inpe.br
²Departamento de Ciências Agrárias – Universidade de Taubaté – UNITAU
Taubaté-SP, Brasil
E-mail: gfisch@uol.com.br

RESUMO
Este trabalho tem por objetivos apresentar as principais características da distribuição temporal da precipitação e da temperatura do ar em Taubaté (SP), além de estabelecer uma caracterização do período da estação chuvosa, bem como verificar a ocorrência de tendências nas séries temporais desses dois elementos climáticos por meio do teste não paramétrico sazonal de Mann-Kendall. Devido à relativa variabilidade interanual da precipitação, não se verificaram tendências significativas no seu valor médio anual. Contudo, as análises da série temporal de 1983 a 2005 mostraram tendência de aumento das chuvas no mês de novembro, redução em abril e uma diminuição do número de dias por ano sem precipitação. Observou-se que o início da estação chuvosa em Taubaté ocorre em meados de setembro e o final acontece em meados de abril.

Palavras-chave: Tendências climáticas; Teste de Mann-Kendall; Estiagem climatológica.

Climate assessment and trend analysis in air temperature and precipitation time series in Taubaté (SP)

ABSTRACT
The main objectives of this paper are to present the temporal climatic characteristics of precipitation and air temperature in Taubaté (SP), in addition to the characterization of the rainy season. The time trend of the climatic elements were studied using the non parametric seasonal Mann-Kendall test. Statistically, no significant average changes in precipitation were detected although a relatively large natural year-to-year variability there exits. A short-term increasing trend from 1983 to 2005 have been observed in November precipitation, a decreasing trend in the amount of the April precipitation and a decreasing trend in the number of dry days per year. This study suggests that the onset of the Taubaté's rainy season occurs in mid-September and the end is in April.

Keywords: Climatic Trend; Mann-Kendall Statistical Test; dry spell.
1. INTRODUÇÃO

A informação climática é importante nas atividades atuais do homem, quer seja para se prevenir de fenômenos atmosféricos adversos, quer seja para auxiliar e otimizar a produção agropecuária. A busca pela otimização da prática agrícola é uma questão estrategicamente fundamental diante da necessidade de produzir alimentos para uma população cada vez maior. Nesse sentido, supõe-se que as informações meteorológicas colocadas à disposição dos agricultores são de fundamental importância para o correto planejamento da produção agrícola. Estima-se que apenas esse setor primário da economia, no qual o agronegócio é uma área em franco desenvolvimento, foi responsável por 9,5% do Produto Interno Bruto (PIB) do Brasil no ano base de 2004 (Brasil, 2005).

Muito se discute, atualmente, sobre a questão de mudanças climáticas, sendo que, para a região do Sudeste Brasileiro, as previsões dos cenários futuros apontam para um aumento da precipitação e da temperatura da ordem de 3 a 4 °C (Machado; Marengo, 2006). Associado a essas mudanças, também poderá ocorrer um aumento do número de eventos extremos, provocando prejuízos sociais e econômicos. Segundo o relatório Stern (2006), perdas econômicas equivalentes a 3% das riquezas produzidas por todas as nações são esperadas nas próximas décadas devido aos impactos das mudanças climáticas globais e ao aumento de eventos extremos, tais como tempestades severas, inundações, períodos de estiagens mais prolongados, etc.

Nesse contexto, este trabalho visa apresentar os valores médios e extremos de temperatura do ar e precipitação medidos no posto meteorológico da Universidade de Taubaté (UNITAU), estabelecer uma possível caracterização do início e fim da estação chuvosa nessa região do país, bem como proceder a uma avaliação da série temporal desses elementos climáticos a fim de subsidiar as questões sobre mudanças climáticas na região. Espera-se que os resultados deste trabalho contribuam para o melhor entendimento da climatologia do Vale do Rio Paraíba do Sul.

2. REVISÃO BIBLIOGRÁFICA

Nos últimos anos, vários estudos se preocuparam em tentar caracterizar as condições climatológicas da região de Taubaté (Fisch, 1995; Fisch, 1999; Nunes; Calbet, 2000), cujo enfoque maior foi dado ao elemento climático precipitação. Esses estudos descreveram especialmente as características do regime pluviométrico, analisaram detalhadamente sua variabilidade interanual, mas não se preocuparam em investigar a provável ocorrência de tendências na série de dados temporais de precipitação.

Recentemente, Marengo e Alves (2005) estudaram a ocorrência de tendência hidrológica na Bacia do Rio Paraíba do Sul, usando longas séries temporais de dados de precipitação e vazão fluvial para várias localidades na região e concluíram que, embora tenham observado vazões com tendências negativas, não há como associar tal redução a uma possível

Em um estudo da variabilidade climática do estado de São Paulo, Dufek e Ambrizzi (2005) utilizaram cinco índices climáticos para investigar a ocorrência de tendências na série de dados temporais de temperatura do ar, tais como “dias quentes”, “dias frios”, “noites quentes”, “noites frias” e “amplitude da temperatura diurna”. De forma geral, o estudo aponta uma tendência a condições mais quentes no estado, explicado em parte pelo aumento da temperatura mínima associada à diminuição de noites frias, e pelo aumento da temperatura máxima associada à diminuição de dias frios.

3. MATERIAL E MÉTODOS

Os dados dos elementos climáticos utilizados neste trabalho foram coletados no posto meteorológico do Departamento de Ciências Agrárias da Universidade de Taubaté (UNITAU), localizado no município de Taubaté, na região do Vale do Rio Paraíba do Sul. O posto está situado nas coordenadas geográficas 23º 02' S e 45º 30' W, numa cota 577 metros acima do nível do mar.

Os dados de precipitação estão sendo coletados desde julho de 1982, quando foi instalado o posto meteorológico. Os dados de temperatura do ar à superfície foram coletados a partir de agosto de 1992, quando o posto meteorológico foi ampliado, por meio de uma cooperação técnico-científica com o Instituto Nacional de Meteorologia (INMET), e passou a integrar a rede de observações meteorológicas do Brasil (Sistema Global de Telecomunicações – GTS).

Na avaliação da precipitação foram considerados os totais mensais, sazonais e anuais e, em relação à temperatura do ar, foram considerados os valores médios mensais de temperaturas máxima e mínima, e seus valores mensais extremos, tais como temperatura máxima absoluta e mínima absoluta. Os valores mensais de precipitação foram calculados como totais mensais (precipitação integrada ao longo de um dia e, posteriormente, ao longo do mês), ao passo que os valores de temperatura média foram calculados pela determinação das temperaturas médias diárias e mensais.

Sobre as variáveis estudadas (temperatura e precipitação) foram aplicados testes estatísticos de análises não paramétricas por meio do teste Sazonal de Mann-Kendall (SMK) para verificar a ocorrência de tendências estatisticamente significativas nas séries de dados temporais.

O teste SMK, proposto inicialmente por Sneyers (1975), é recomendado pela Organização Meteorológica Mundial (OMM) em estudos de tendências em séries temporais de elementos climáticos (Yu et al., 2002). Esse mesmo teste também foi utilizado por Machado e Marengo (2006) para estudos hidrológicos no Vale do Rio Paraíba do Sul. O teste considera que, assumindo a hipótese nula (H₀) de estabilidade de uma série temporal, os valores da variável aleatória são independentes e igualmente distribuídos.
Dado uma série temporal aleatória \(X_1, \ldots, X_i, \ldots, X_n \) a ser analisada na comprovação de \(H_0 \), deve-se primeiro calcular a posição ou a ordem de cada elemento \(X_i \) em relação aos outros valores da série, de forma que \(R_1, \ldots, R_i, \ldots, R_n \) representa a série de números que especificam a ordem relativa de cada elemento da série temporal de \(X_i \). O passo seguinte consiste em determinar o sinal de cada número-ordem pelas funções sinal \((R_j - R_i)\):

- \(\text{sinal}(R_j - R_i) = 1 \), para \(R_j - R_i > 0 \)
- \(\text{sinal}(R_j - R_i) = 0 \), para \(R_j - R_i = 0 \)
- \(\text{sinal}(R_j - R_i) = -1 \), para \(R_j - R_i < 0 \)

Sob a hipótese nula \(H_0 \) de ausência de tendência de variação (quer seja positivo ou negativo), o teste consiste no somatório apresentado na equação abaixo:

\[
S = \sum_{j=i+1}^{n} \text{sinal}(R_j - R_i)
\]

Supondo que \(H_0 \) seja verdadeira, então a estatística \(S \) apresenta uma distribuição aproximadamente normal gaussiana, com média igual a zero e variância \((\text{VAR})\) conforme a seguinte equação:

\[
\text{VAR}(S) = n(n-1)(2n+5)/18
\]

Quando o teste é aplicado para séries temporais mensais de observações, deve ser levado em consideração a covariância entre os valores mensais no cômputo da variância do teste estatístico. Nesse caso os dados são agrupados em uma matriz do tipo:

\[
X = \begin{bmatrix}
X_{1,1} & \cdots & X_{1,12} \\
\vdots & \ddots & \vdots \\
X_{n,1} & \cdots & X_{n,12}
\end{bmatrix}
\]

E a respectiva matriz de ordem de cada observação em \(X \) como sendo:

\[
R = \begin{bmatrix}
R_{1,1} & \cdots & R_{1,12} \\
\vdots & \ddots & \vdots \\
R_{n,1} & \cdots & R_{n,12}
\end{bmatrix}
\]

A estatística \(S_g \) para cada mês tem a seguinte formulação:

\[
S_g = \sum_{j=i+1}^{n} \text{sinal}(R_{j,g} - R_{i,g})
\]

em que, \(g = 1, 2, \ldots, 12 \) que representa os meses do ano (Janeiro = 1, Dezembro = 12).

Sob \(H_0 \), o teste estatístico sazonal de Mann-Kendall é dado por:

\[
S = \sum_{g=1}^{12} S_g
\]

Supondo que \(H_0 \) seja verdadeira, então a estatística \(S \) apresenta uma distribuição aproximadamente normal com média igual a zero e variância \(\text{VAR} \) de acordo com a equação:

\[
\text{VAR}(S) = 12 \text{VAR}(S_g) + 12 \sum_{g,h=1}^{12} \text{COV}(S_g, S_h)
\]

A covariância \(\text{COV}(S_g, S_h) \) é dada por:

\[
\text{COV}(S_g, S_h) = \left[K_{g,h} + 4 \sum_{i=1}^{n} R_{i,g} R_{i,h} - n(n+1)^2 \right] / 3
\]

em que,
Finalmente, o valor da estatística MK é dado por:

\[
MK = \begin{cases}
\frac{S-1}{\sqrt{\text{VAR}(S)}} & \text{se } S > 0 \\
0 & \text{se } S = 0 \\
\frac{S+1}{\sqrt{\text{VAR}(S)}} & \text{se } S < 0
\end{cases}
\]

Com base na análise da estatística MK, é feita a decisão final de aceitar ou rejeitar H₀, ou seja, pode-se confirmar a hipótese de estabilidade dos dados ou rejeitá-la a favor da hipótese alternativa, ou seja, de existência de tendência nos dados. O sinal da estatística MK indica se a tendência é crescente (MK>0) ou decrescente (MK<0).

Num teste bilateral para tendência, H₀ deve ser aceito se |MK| ≤ \(Z_{\alpha/2}\), em que o valor de \(Z_{\alpha/2}\) é obtido da Tabela na Normal Reduzida. Em geral, considera-se o nível de significância do teste \(\alpha = 0,05\), o que corresponde a aceitar a Hipótese H₀ para uma probabilidade de 95%.

4. RESULTADOS

4.1. Precipitação

A Figura 1 ilustra a distribuição do total anual de chuvas no município de Taubaté, no período de 1983 a 2005. Constata-se que a menor ocorrência de chuvas no município foi observada em 1984, com apenas 854 mm, ao passo que o maior valor (1687 mm) foi registrado em 1989, ressaltando a alta variabilidade temporal da precipitação na região. A precipitação anual média desse período é de 1350 mm, muito próximo da normal climatológica (1352 mm) determinada pelo INMET e analisada por Fisch (1995).

Em Taubaté, assim como em toda a região do Vale do Rio Paraíba do Sul, as chuvas mais significativas iniciam-se em setembro de cada ano e estendem-se até o início de abril do ano seguinte (Figura 2). A análise da distribuição da precipitação pelas estações do ano permite concluir que, aproximadamente, 44% da precipitação anual ocorrem no verão (trimestre dez., jan. e fev.), enquanto o inverno (trimestre jun., jul.e ago.) é a estação menos chuvosa, com cerca de 7% do total da precipitação anual. As estações de transição, primavera (trimestre set., out. e nov.) e outono (trimestre mar., abr. e mai.) contribuem com os restantes 50% da precipitação total, repartidos, aproximadamente, de forma equitativa.

As séries sazonais de precipitação em Taubaté são apresentadas na Figura 3. A característica mais significativa que se observa nessa figura é a aparente tendência de redução da precipitação no outono ao longo do período analisado, acompanhada de ligeiro aumento de precipitação na primavera, quando comparada com a precipitação sazonal média histórica. No inverno, a variabilidade interanual da precipitação é maior em relação às demais estações do ano, com ocorrência tanto de invernos muito secos quanto de invernos muito chuvosos.

A visualização dos totais e da média das variáveis selecionadas corresponde à análise exploratória do padrão temporal dos dados de precipitação. Segue-se agora o cálculo da estatística Sazonal de Mann-Kendall para verificar se há tendência estatisticamente significativa nas séries temporais de dados de precipitação registrados no posto meteorológico. Os resultados das tendências são apresentados na Tabela 1.
A observação da Tabela 1 permite concluir que não foram encontradas tendências significativas nas variáveis de precipitação analisadas com o teste SMK, com exceção dos meses de abril e de novembro, para as quais foram encontradas tendências estatisticamente significativas no nível de confiança de 95% (Figura 4).

As tendências aparentes observadas na precipitação sazonal que ocorrem na primavera e no outono, conforme mencionado anteriormente, devem-se, principalmente, ao significativo aumento e diminuição dos totais de precipitação nos meses de novembro e abril, respectivamente. A forma gráfica do teste SMK é apresentada na Figura 6, em que as linhas horizontais representam os limites críticos dos intervalos de confiança bilaterais de 99% (linha cheia) e de 95% (linha pontilhada). A tendência é significativa quando os valores absolutos da estatística MK são maiores do que os limites de confiança, o que acontece exatamente nos meses de abril e novembro.

Apesar da curta série temporal de dados de precipitação, é possível formular algumas hipóteses para as tendências observadas. O aumento significativo das precipitações em novembro (primavera) em grande parte é explicado pelo efeito do aparente aumento de temperatura do ar na região, conforme constatado em Dufek e Ambrizi (2005), que facilita e intensifica o processo de convecção natural e a conseqüente formação de chuvas convectivas. No caso da redução das precipitações em abril (outono), deve-se salientar que a passagem de sistemas frontais na região, nessa época do ano, provoca, com frequência, a ocorrência de chuvas (Fisch, 1999). Entretanto, com o aquecimento da atmosfera que se observa no nível global, de acordo com Stern (2006), as massas de ar experimentam mais dificuldades em se deslocar pela região Sudeste do Brasil, com a conseqüente redução de chuvas frontais. Os meses de inverno possuem um total de chuva muito pequeno para registrar essas tendências,
mas a precipitação do outono apresenta aproximadamente 25% da precipitação anual (Fisch, 1999) e, com isso, consegue-se observar esse sinal de redução da precipitação.

Tabela 1. Resultados das análises de tendência com nível de confiança de 95% e 99%.

Variável analisada	Teste de Mann-Kendal (Z calculado)	Tendência
	α = 0,05	α = 0,01
Precipitação - anual	-0,092	NS
Precipitação mensal - abril	-2,430	-S
Precipitação mensal - novembro	2,086	+S
Estiagem climatológica - anual	-2,512	-S
Estiagem climatológica - primavera	-2,733	-S

NS = tendência não significativa; +S = tendência significativa positiva; -S = tendência significativa negativa.

Figura 3. Evolução temporal da precipitação sazonal em Taubaté.

Figura 4. Estatística MK do teste de sazonal de Mann-Kendal referente aos meses do ano.
Adicionalmente, foi feita uma caracterização sobre as datas esperadas de início e fim da estação chuvosa na região do vale do Paraíba. Este trabalho atualizou a metodologia utilizada por Fisch (1999), que se baseia na chuva acumulada a cada cinco dias (pêntadas). O critério adotado determina para o início da estação chuvosa a primeira pêntada após três pêntadas consecutivas com precipitação acumulada igual ou superior a 45 mm, enquanto o final da estação chuvosa é definido como a pêntada, a partir da qual ocorrem três pêntadas consecutivas com precipitação inferior a 45 mm. Cabe ressaltar que, inicialmente, foram calculados valores médios de precipitação para cada pêntada, usando a série temporal completa (23 anos). Sendo assim, em média, as primeiras chuvas significativas, que indicam para o início da estação chuvosa no vale do Paraíba, ocorrem entre 18 e 22 de setembro (pêntada 53); já o final da estação chuvosa ocorre entre 6 e 10 de abril (pêntada 20) (Figura 5).

Outro aspecto analisado com relação ao estudo da variabilidade da precipitação é a estiagem climatológica, definida como sendo o número de dias por ano sem precipitação. Na Figura 6, é possível visualizar uma redução do número de dias sem chuvas na série anual observada, sendo que esse evento é particularmente acentuado na estação da primavera (estatísticas apresentadas na Tabela 1). Esse fato mostra-se coerente com os resultados apresentados na Figura 3, em que se nota um aumento da água precipitada na primavera.
4.2. Temperatura do ar à superfície

A temperatura média anual do ar no período de 1992 a 2005 foi de 21,9°C, muito próxima da normal climatológica (21,7°C) do INMET (Fisch, 1995), com o valor mínimo de 21,3°C registrada em 1996, e máximo de 22,7°C em 2002. As médias de temperatura nas estações do ano são apresentadas na Tabela 2. Nesse período, a temperatura média à superfície variou entre um mínimo de 12,2°C no inverno, e um máximo de 30,6°C no verão. Os valores de temperatura absoluta extrema medidos no posto meteorológico foram de 0,9°C para a mínima (em julho/1994) e 37,8°C para a máxima (em setembro/1997).

<table>
<thead>
<tr>
<th>Estação do ano</th>
<th>Temperatura média do ar (°C)</th>
<th>Temperatura média mínima (°C)</th>
<th>Temperatura média máxima (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primavera</td>
<td>23,6</td>
<td>17,5</td>
<td>29,6</td>
</tr>
<tr>
<td>Verão</td>
<td>24,8</td>
<td>19,0</td>
<td>30,6</td>
</tr>
<tr>
<td>Outono</td>
<td>19,9</td>
<td>13,6</td>
<td>26,2</td>
</tr>
<tr>
<td>Inverno</td>
<td>19,1</td>
<td>12,2</td>
<td>26,0</td>
</tr>
</tbody>
</table>

A série temporal dos valores mensais de temperatura média, máxima e mínima são apresentados na Figura 7. Verifica-se que a menor média do ano ocorre no mês de julho (17,8°C), enquanto no mês de fevereiro é registrada a maior média (25,1°C). A média das temperaturas mínimas do ar, no mês de julho pode atingir até 10,9°C, ao passo que a média das temperaturas máximas chega a valores superiores a 31°C em fevereiro. O mês do ano com maior coeficiente de variação é outubro, caracterizando maior variabilidade na temperatura do ar.

De forma geral, o teste SMK indica que nenhuma tendência significativa na temperatura do ar foi detectada, com exceção da tendência decrescente da temperatura mínima extrema no mês de fevereiro, como pode ser evidenciado na Tabela 2. A forma gráfica do teste Sazonal de Mann-Kendall para a temperatura mínima extrema do ar é apresentada na Figura 8.

Figura 7. Valores mensais de temperatura média, máxima e mínima.

1 Cabe salientar a diferença entre o período de coleta de dados de precipitação e temperatura do ar. As medições de precipitação na UNITAU iniciaram-se em 1982, mas o posto meteorológico (com a instalação do abrigo meteorológico e sensores de Temperaturas do Ar, Máxima e Mínima) somente ocorreu em 1992.

<table>
<thead>
<tr>
<th>Variável analisada</th>
<th>Teste de Mann-Kendal (Z calculado)</th>
<th>Tendência</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura média anual</td>
<td>0,958</td>
<td>NS</td>
</tr>
<tr>
<td>Temperatura média máxima anual</td>
<td>0,819</td>
<td>NS</td>
</tr>
<tr>
<td>Temperatura média mínima anual</td>
<td>0,264</td>
<td>NS</td>
</tr>
<tr>
<td>Temperatura mínima extrema - fevereiro</td>
<td>-2,470</td>
<td>-S</td>
</tr>
</tbody>
</table>

NS = tendência não significativa; +S = tendência positiva; -S = tendência negativa.

4. CONCLUSÕES

Este estudo procedeu a caracterização e análise da evolução de dois elementos climáticos, temperatura do ar e precipitação, na região de Taubaté. Os resultados apresentados, integrando as informações disponíveis no posto meteorológico da UNITAU, indicam que não há tendência significativa na série temporal de 14 anos de registros de temperatura do ar, com exceção da tendência decrescente da temperatura mínima extrema no mês de fevereiro. No caso da precipitação, no período 1983-2005, as análises mostraram tendência de aumento das chuvas no mês de novembro e também diminuição do número de dias secos. Por outro lado, a precipitação no mês de abril apresenta uma pequena redução estatisticamente significativa. Em termos de precipitação anual, essas duas tendências se equivalem e acabam se anulando, de modo que os testes estatísticos aplicados sobre a série temporal de 23 anos de dados de precipitação anual não apresentaram nenhum indício de tendência positiva ou negativa. Porém, estudos mais detalhados e completos, utilizando uma série temporal maior, necessitam ser realizados para confirmar a hipótese de estabilidade dos dados de temperatura do ar e precipitação no Vale do Rio Paraíba do Sul.

5. REFERÊNCIAS

Evolução espacial de áreas irrigadas com base em sensoriamento remoto no Médio Vale do Paraíba do Sul, Sudeste do Brasil

(doi:10.4136/ambi-agua.7)

Nilton S. Paes Junior; Silvio J. C. Simões

Laboratório de Análise Geoespacial (LAGE), Faculdade de Engenharia de Guaratinguetá (UNESP)
E-mail: {paesjunior, simoes}@feg.unesp.br

RESUMO
Este estudo analisa a evolução espacial das áreas irrigadas na região do Médio Vale do Paraíba do Sul, considerando o período entre 1988 e 2003. O cultivo de arroz de várzea é uma atividade histórica no Vale do Paraíba responsável por cerca de 51% do consumo de água na bacia. A análise espacial multitemporal foi realizada a partir de classificação supervisionada com o auxílio do software SPRING, utilizando-se imagens Landsat-TM. As quatro regiões analisadas (Guaratinguetá, Tremembé, Pindamonhangaba e Lorena-Canas) representam 82% de toda a área irrigada na região. Os resultados mostraram, para o período considerado, significativa redução das áreas de irrigação em Lorena-Canas e Pindamonhangaba, respectivamente 32,4 e 22,7%, enquanto em Tremembé houve a redução menor: 6,4%. A região de Guaratinguetá foi a única a apresentar um aumento da área irrigada: 14,2%. Considerando a área total, houve uma redução de 11,8% no período entre 1988 e 2003. Esses resultados mostram a tendência inversa ao que ocorre em outras regiões do Estado de São Paulo, as quais tiveram um significativo aumento das áreas de irrigação nas últimas décadas. O avanço da urbanização e a exploração de minerais de agregados são responsáveis pela redução das áreas de arroz irrigado, além de contribuir para a destruição do que resta do ecossistema de áreas úmidas ligadas ao Vale do Paraíba.

Palavras-chave: arroz irrigado; dinâmica do uso da terra; sensoriamento remoto; Vale do Paraíba.

Evolução espacial de áreas irrigadas com base em sensoriamento remoto no Médio Vale do Paraíba do Sul, Sudeste do Brasil

ABSTRACT
This study intends to evaluate the spatial analysis of the rice irrigation areas in the Medium Paraíba do Sul Valley for the period comprised between 1988 and 2003. Rice irrigation is a historical activity in Paraiba Valley being responsible for 51% of the water supply in this region. Supervised Classification was made for the multitemporal interpretation of remote sensing data (Landsat TM) using the software SPRING, ver 3.0. The analysis encompassed four regions (Guaratinguetá, Tremembé, Pindamonhangaba and Lorena-Canas), which represent 82% of the total irrigated area in the Paraiba Valley. The results show a significant decrease in irrigation area in Lorena-Canas (32.4%) and Pindamonhangaba (22.7%) and a smaller one in Tremembé region (6.4%). In contrast, Guaratinguetá region has presented an increase in irrigation area (14.2%). For the four regions analyzed, a reduction of 11.8% in irrigated area has been observed. Unlike other regions of São Paulo State, the irrigation activity in the Paraíba Valley is decreasing notably due to rapid urbanization and...

mineral extraction near, or on alluvial plan, contributing to the reduction of irrigated rice cultivation and elimination of wetlands ecosystems.

Keywords: irrigation; land use dynamics; remote sensing; Paraíba Valley.

1. INTRODUÇÃO

O uso da irrigação vem se difundindo no mundo devido à premissa de se produzir mais, em menores áreas, no menor período de tempo e ao menor custo. Assim, o uso da irrigação tem sido responsável por cerca de 70% de toda a água utilizada no planeta e teve crescimento de cerca de 130% (em km³/ano) no período compreendido entre 1960 e 2000 (Telles, 2002). Essa magnitude de uso está relacionada tanto ao aumento das áreas agrícolas quanto à variabilidade climática que atinge regiões situadas em diferentes latitudes do planeta. No caso do Brasil, a demanda por agricultura irrigada supera os 60% quando comparada a todos os demais usos (Lima et al., 1999).

No Estado de São Paulo, ainda que as chuvas sejam relativamente suficientes (em torno de 1376 mm/ano), sua distribuição não é uniforme e a irrigação é largamente utilizada. Dessa forma, a atividade de irrigação no Estado ultrapassa os usos domésticos e industriais, tendo a demanda por recursos hídricos superficiais alcançado 143m³/s (41% do total). Um levantamento realizado pela Secretaria de Recursos Hídricos do Estado mostra que a área irrigada quintuplicou em um período de 25 anos (1970 a 1995), apresentando crescimento anual médio de 6,5% (São Paulo, 2002).

No caso do Vale do Paraíba (porção paulista), a atividade de irrigação constitui atividade histórica iniciada nos primórdios do século XX, a qual vem sendo utilizada para garantir boas safras de arroz plantadas nas várzeas do rio Paraíba do Sul e alguns dos seus principais afluentes. Atualmente, a atividade de irrigação no Vale do Paraíba consome 10,2 m³/s, o que corresponde a 51% dos recursos hídricos superficiais consumidos na região (São Paulo, 2002).

Nos últimos anos, a bacia do Paraíba do Sul tem chamado a atenção dos especialistas pela dificuldade de garantir, de forma sustentável, água para todos as formas de uso (consuntiva e não-consuntiva), envolvendo os setores agrícola, industrial, energético, doméstico e minerário.

Este artigo tem, como objetivo analisar a evolução espacial das áreas de irrigação no Vale do Paraíba (porção paulista) com base em imagens de satélite no período compreendido entre 1988 e 2003. O uso de sensoriamento remoto vem se tornando um importante auxiliar no gerenciamento das áreas agrícolas, o que tem motivado pesquisas no sentido de melhorar as técnicas e os métodos empregados na classificação das áreas de cultivo (Van Niel e McVicar, 2004). A análise e a classificação de imagens de satélite são, portanto, ferramentas poderosas na geração de informação sobre o uso e cobertura da terra ainda que não sejam capazes de fornecer 100% de certeza em seus resultados.

Espere-se que os resultados obtidos neste artigo contribuam para o planejamento territorial e para a avaliação da disponibilidade hídrica para as próximas décadas na região.

2. DESCRIÇÃO DA ÁREA DE ESTUDO

A área de estudo corresponde à porção paulista da bacia do Rio Paraíba do Sul, a qual constitui uma das bacias independentes que integram a região hidrográfica do leste brasileiro. A superfície da bacia é avaliada em cerca de 57.000 km² e equivale a pouco menos de 0,7%
da área do país e 6% da superfície da região Sudeste do Brasil. A porção da bacia que está sendo estudada neste trabalho está inserida no Estado de São Paulo (Alto e Médio Vale do Paraíba do Sul), correspondendo a uma extensa área de várzea delimitada por sistemas de serras de orientação SW-NE (figura 1).

Figura 1. Imagem de satélite Landsat mostrando o Vale do Paraíba e áreas adjacentes com a localização aproximada das quatro áreas de estudo (Tremembé, Pindamonhangaba, Guaratinguetá e Lorena/Canas).

Conforme se pode perceber a partir da figura 1, a bacia do rio Paraíba do Sul possui uma elevada diversidade do meio físico, a qual é produto de uma evolução geológica-geomorfológica complexa (IPT, 1981; Ross; Moroz, 1997). Na região são encontradas três unidades geológicas bem distintas: rochas precambrianas, associadas aos relevos de morros e serras; rochas sedimentares terciárias associadas aos relevos colinosos e rochas quaternárias associadas à planície de inundação. Essa grande diversidade do meio físico também favoreceu a evolução de várias unidades pedológicas distintas entre as quais se podem destacar os latossolos, os argissolos, os cambissolos e os organossolos (Oliveira et al., 1999).

A bacia apresenta elevada concentração urbano-industrial localizada ao longo da Rodovia Presidente Dutra. O crescimento populacional na região do Vale do Paraíba (porção paulista) foi vertiginoso, aumentando em cerca de 300% nos últimos 40 anos. A população passou de aproximadamente 518.000, em 1960, para 1690.000, em 2000 (São Paulo, 2000). Cidades como São José dos Campos, Taubaté, Jacareí, Pindamonhangaba, Guaratinguetá, Lorena, Caçapava e Cruzeiro contribuem com cerca de 85% da população e mais de 93% da produção industrial da região (São Paulo, 2000). A expansão de diferentes centros urbanos foi favorecida pela boa infra-estrutura de transportes, que por sua vez, possibilitou a implantação da atividade industrial no início do século XX e a sua consolidação e diversificação na segunda metade do século passado.
Do ponto de vista institucional, a bacia do rio Paraíba do Sul apresenta-se como uma das mais complexas do país, pois necessita ajustar conflitos de interesses de três dos principais estados da Federação (São Paulo, Rio de Janeiro e Minas Gerais). Diante dessa complexidade e da excessiva demanda por recursos hídricos, a ANA (Agência Nacional de Águas) considerou a bacia do rio Paraíba do Sul como uma das quatro prioritárias para investimento juntamente com as bacias do Piracicaba/Capivari, Doce e São Francisco.

2.1. Uso da Terra

Registros e reconstituições da vegetação do sudeste brasileiro indicam que a região do Vale do Paraíba apresentava-se coberta por uma floresta trópica latifoliada em quase toda a sua extensão. Historicamente, a atividade humana imprimiu transformações dramáticas na paisagem regional do sudeste brasileiro com a redução da área de floresta de aproximadamente 81% para 8% nos últimos 300 anos (Fujieda et al., 1997).

Esse processo de desmatamento, embora viesse ocorrendo desde meados do século XVII com o “ciclo da cana-de-açúcar”, intensificou-se com a cultura do café, que teve um importante papel na região do Vale do Paraíba e adjacências a partir do século XVIII. Com a decadência do café devido, entre outros fatores, ao esgotamento dos solos e a dificuldade de se obter terras férteis, a principal atividade rural passou a ser a pecuária pela criação extensiva de gado leiteiro e das atividades dela decorrentes. As condições inadequadas de manejo da pecuária na região têm contribuído para a intensa degradação da paisagem e reduzindo as perspectivas de aproveitamento dessas áreas. Atualmente, na região, inicia-se, possivelmente, um novo ciclo pela silvicultura (plantio de eucalipto). Caso esses plantios sejam realizados com boas práticas de manejo, podem se constituir em uma alternativa para a recomposição da paisagem nas áreas de pastos/campos degradados.

Em termos de distribuição espacial, as áreas de pastos/campos representam cerca de 50% da área total da bacia (Tabela 1). Considerando a terminologia utilizada pela Ecologia da Paisagem, essas áreas se constituem no elemento matriz, enquanto os demais usos seriam pedaços (patches) inseridos na matriz (Forman; Godron, 1986; Forman, 1995).

<table>
<thead>
<tr>
<th>Uso Identificado</th>
<th>Ocorrência (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matas</td>
<td>17,4</td>
</tr>
<tr>
<td>Capoeiras</td>
<td>13,4</td>
</tr>
<tr>
<td>Campo Natural de Altitude</td>
<td>0,7</td>
</tr>
<tr>
<td>Reflorestamento</td>
<td>9,0</td>
</tr>
<tr>
<td>Campo / Pastagem</td>
<td>49,4</td>
</tr>
<tr>
<td>Pastagem de Várzea</td>
<td>3,3</td>
</tr>
<tr>
<td>Agricultura</td>
<td>0,4</td>
</tr>
<tr>
<td>Agricultura de várzea</td>
<td>1,0</td>
</tr>
<tr>
<td>Áreas com mineração</td>
<td>0,2</td>
</tr>
<tr>
<td>Áreas com solo exposto</td>
<td>0,2</td>
</tr>
<tr>
<td>Área urbanizada</td>
<td>2,9</td>
</tr>
<tr>
<td>Rios, lagos</td>
<td>0,6</td>
</tr>
<tr>
<td>Reservatórios</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Analisando os dados apresentados na Tabela 1, pode-se constatar uma paisagem com elevado grau de fragmentação na qual se destacam as áreas de mata nativa (17,4%), capoeira (13,4%), reflorestamento (9,0%), pastagem de várzea (3,3%), agricultura de várzea (1,0%) áreas urbanizadas (2,9%) e reservatórios (1,4%).
Embora as áreas de agricultura de várzea sejam relativamente pequenas em relação à área total da bacia (1,0%), possuem grande importância na constituição da diversidade da paisagem na região, ocupando parte das extensas áreas da planicie aluvionar do rio Paraíba do Sul. Uma outra parte expressiva da várzea (3,3%) é utilizada para criação de gado; trata-se de uma forma inapropriada de uso devido, entre outros motivos, ao fato do nível freático estar próximo à superfície e ser bastante suscetível à contaminação. As áreas urbanas representam 2,9% do total e correspondem, principalmente, aos vários núcleos de conurbação (São José dos Campos-Jacareí, Taubaté-Tremembé, Aparecida-Guaratinguetá-Lorena). Parte das áreas urbanas ocupam, inapropriadamente, as áreas de baixíssimas declividades (entre zero e 2%) ligadas ao rio Paraíba do Sul. As áreas com explotação de agregados minerais, principalmente areia, ocupam uma área relativamente pouco expressiva da bacia (0,2%). Entretanto, o trecho entre Jacareí e Tremembé é responsável por cerca de 10% da produção nacional de areia e chama a atenção pelo impacto que ocasiona na paisagem natural.

Tabela 2. Relação das áreas de *polders* no Vale do Paraíba (São Paulo, 2000).

<table>
<thead>
<tr>
<th>Municípios</th>
<th>Nome dos polders</th>
<th>Áreas (hectares)</th>
<th>Diques (metros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canas Caninhas</td>
<td>140</td>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>Canas Canas</td>
<td>410</td>
<td>3900</td>
<td></td>
</tr>
<tr>
<td>Lorena Lorena I</td>
<td>1800</td>
<td>7800</td>
<td></td>
</tr>
<tr>
<td>Lorena Lorena II</td>
<td>1500</td>
<td>8320</td>
<td></td>
</tr>
<tr>
<td>Guaratinguetá Colônia do Piaguí</td>
<td>2200</td>
<td>6510</td>
<td></td>
</tr>
<tr>
<td>Guaratinguetá Guaratinguetá</td>
<td>212</td>
<td>4450</td>
<td></td>
</tr>
<tr>
<td>Aparecida Aparecida I</td>
<td>385</td>
<td>7200</td>
<td></td>
</tr>
<tr>
<td>Aparecida Aparecida II</td>
<td>120</td>
<td>5500</td>
<td></td>
</tr>
<tr>
<td>Roseira Roseira II</td>
<td>1000</td>
<td>6200</td>
<td></td>
</tr>
<tr>
<td>Pindamonhangaba Pinda I</td>
<td>180</td>
<td>5100</td>
<td></td>
</tr>
<tr>
<td>Pindamonhangaba Pinda II</td>
<td>193</td>
<td>3200</td>
<td></td>
</tr>
<tr>
<td>Pindamonhangaba Pinda IV</td>
<td>1400</td>
<td>7300</td>
<td></td>
</tr>
<tr>
<td>Tremembé Tremembé I</td>
<td>2025</td>
<td>12400</td>
<td></td>
</tr>
<tr>
<td>Tremembé Tremembé II</td>
<td>944</td>
<td>5300</td>
<td></td>
</tr>
<tr>
<td>Tremembé Tremembé III</td>
<td>780</td>
<td>7400</td>
<td></td>
</tr>
<tr>
<td>Taubaté Quiririm I</td>
<td>780</td>
<td>5200</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13993</td>
<td>97680</td>
<td></td>
</tr>
</tbody>
</table>

2.2. Irrigação no Vale do Paraíba

As plantações de arroz foram introduzidas no final do século XVIII, no município de Tremembé com a vinda e instalação dos frades trapistas, que utilizaram as boas características dos terrenos de várzeas e recursos hídricos do Ribeirão da Serragem (Lindemberg, 2001).

Durante a primeira metade do século XX, a cultura do arroz irrigado difundiu-se por toda a região devido à boa característica dos terrenos de várzeas do Rio Paraíba e também pela boa disponibilidade hídrica da bacia. A irrigação foi executada pelo método de inundação permanente no qual a água utilizada é captada, principalmente de rios e córregos, sendo tal processo executado por gravidade na maioria das propriedades.

Embora as áreas de várzea no Vale do Paraíba tivessem potencial produtivo elevado para culturas anuais, sua exploração encontrava sérios empecilhos devido às inundações causadas pelas cheias do rio Paraíba do Sul. Essas cheias afetavam o seu leito secundário e as águas permaneciam por tempo prolongado, impedindo o aproveitamento das áreas de várzeas.

Em 1951, para atenuar esse problema, o governo do Estado de São Paulo, por meio do seu Departamento de Águas e Energia Elétrica (DAEE), iniciou um trabalho de execução de cortes dos meandros do rio Paraíba do Sul. Muitos dos alinhamentos hoje observados no canal
principal são devidos às modificações realizadas a partir da década de 50, quando o arroz, plantado em sua várzea, passou a ser encarado como uma atividade comercial.

Pelo convênio com o DAEE, foi elaborado um projeto que previa a retificação do rio Paraíba do Sul, assim como a construção de diques e canais que possibilitariam minimizar os problemas de inundações nas épocas de cheias. Para esse fim foram estabelecidas 42 unidades autônomas, denominadas “polders”, que tinham sistema de irrigação e drenagem próprias. Tais polders possibilitariam a exploração de uma área agrícola de cerca de 34.000 ha com uma demanda total de água em torno de 50 m³/s durante o ciclo de cultura. Porém, as metas do projeto não foram atingidas, pois o governo priorizou seus investimentos no desenvolvimento do setor industrial na bacia; apenas cerca de 14.000 ha dos 34.000 ha previstos foram ocupados (São Paulo, 2000).

A Tabela 2, lista as áreas protegidas e beneficiadas (polders) com suas respectivas áreas e comprimento dos diques. Verifica-se que os diques têm uma extensão total de 97.680 m e área total de 13.993 hectares (em torno de 140 km²).

3. MATERIAL E MÉTODOS

Na identificação e no mapeamento das áreas irrigadas procurou-se utilizar um conjunto de imagens de satélite multi-temporais que permitissem diferenciar, com razoável acuidade, as principais formas de uso da terra e possibilitasse avaliar a evolução das áreas selecionadas por um período de 15 anos (1988 a 2003). As imagens de satélite utilizadas foram Landsat – 5, nas bandas 3, 4 e 5 com as cores azul, verde e vermelha, respectivamente com passagens em 03/07/1988, 27/10/1995 e 27/02/2003.

Os procedimentos de interpretação e tratamento de imagem foram executados com o auxílio do programa SPRING (Sistema de Processamento de Informações Georreferenciadas), desenvolvido pelo INPE (Instituto Nacional de Pesquisas Espaciais).

Inicialmente, foi executado o georreferenciamento das imagens, utilizando-se o módulo INPIMA no SPRING e salvando como GRIB. Os pontos de controle foram obtidos a partir das cartas topográficas de Guaratinguetá, Santos e Volta Redonda, do IBGE em escala 1:250.000 (Tabela 3).

Em seguida, foi executado o processo de classificação supervisionada a partir da técnica de Máxima Verossimilhança (Maxver) do software SPRING (Câmara et al., 1996; Shiba et al., 2005). O processo de classificação supervisionada é controlado pelo usuário que seleciona e delimita algumas áreas piloto suficientemente representativas das categorias de uso da terra que irão compor a legenda dos mapas. Para ajudar na seleção de amostras homogêneas de cada classe fez-se uso de mapas cartográficos convencionais e de fotografias aéreas.

Os mapas topográficos utilizados foram em escala 1:50.000, IBGE (folhas Guaratinguetá, Pindamonhangaba, Tremembé, Lorena) e as fotografias aéreas utilizadas foram obtidas em junho de 1973 e maio de 1998 nas escalas 1:25000 e 1:10000, respectivamente. Entretanto, as fotografias aéreas disponíveis cobriam apenas parte da área estudada (região de Guaratinguetá). Visitas de campo também foram determinantes para o processo de classificação de imagens, avaliando situações duvidosas quanto ao uso da terra e definindo coordenadas de pontos de controle com o auxílio de um aparelho de navegação Garmin GPS II+.

As dúvidas mais frequentes envolviam a separação entre as áreas constituídas de arroz irrigado atuais e as áreas de arroz irrigado abandonadas ou ocupadas por pasto. Nessas condições buscou-se selecionar vários campos de pequeno tamanho que tendem a reduzir a variabilidade da categoria em análise quando comparados com campos de maior dimensão (Campbell, 2002; Lillesand; Kiefer, 2004).

Tabela 3. Registros dos pontos de controle utilizados.

<table>
<thead>
<tr>
<th>Pontos de controle selecionados</th>
<th>Localização</th>
<th>Coordenadas X</th>
<th>Coordenadas Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC – 1</td>
<td>Ponta Grossa (Ubatuba)</td>
<td>498250</td>
<td>7405250</td>
</tr>
<tr>
<td>PC – 2</td>
<td>Represa do Funil (Itatiaia)</td>
<td>539750</td>
<td>7510375</td>
</tr>
<tr>
<td>PC – 3</td>
<td>Barragem do rio Paraitinga</td>
<td>432525</td>
<td>7416250</td>
</tr>
<tr>
<td>PC – 4</td>
<td>Caçandoca (Maranduba)</td>
<td>478750</td>
<td>7392500</td>
</tr>
<tr>
<td>PC – 5</td>
<td>Caraguatatuba</td>
<td>461650</td>
<td>7387500</td>
</tr>
<tr>
<td>PC – 6</td>
<td>São Sebastião</td>
<td>459625</td>
<td>7376500</td>
</tr>
</tbody>
</table>

Em termos regionais, foram selecionadas quatro áreas em que o cultivo do arroz irrigado se mostra mais expressivo: Lorena-Canas com 3.710 ha, Guaratinguetá (Colônia do Piaguí) com 2.200 ha, Pindamonhangaba com 1.773 ha e Tremembé com 3.749 ha. A área total estudada corresponde a, aproximadamente, 82% da área total de irrigação (Tabela 2).

Para a seleção das classes temáticas levou-se em conta a identificação dos plantios de arroz de várzea e os tipos de uso existentes no seu entorno. Dessa forma foram identificadas e diferenciadas quatro classes de usos da terra representados por mata, pastagem, plantios de arroz e áreas urbanas.

4. RESULTADOS E DISCUSSÃO

Conforme já mencionado, a análise espacial foi direcionada a fim de avaliar a extensão das áreas irrigadas e suas áreas de entorno. As áreas irrigadas da região estudadas situam-se em uma extensa várzea a qual pode ser considerada como uma “área úmida” (*wetland*), definida como aquelas regiões onde predominam solos hidromórficos e estão saturados em boa parte do ano (Gilman, 1994).

Áreas úmidas cultivadas com arroz, como é o caso da região estudada, são designadas por Anderson et al. (1976) como uma categoria maior, designada “Terra Agrícola”; que difere da categoria “Terra Úmida” na qual ocorre apenas vegetação natural e o ecossistema encontra-se preservado. Para a área de estudo, a definição de uma dessas categorias não é simples devido à paisagem do Vale do Paraíba ser constituída por fragmentos de vegetação natural, pastagem de várzea, arroz de várzea e urbanização. Portanto, a região é formada por um misto de “Terras Agrícolas” (plantio de arroz e pastos), pequenas porções de “Terra Úmida” (vegetação hidrófila) e áreas urbanas e periurbanas.

Com base nos procedimentos descritos no item 3 (Metodologia), foi possível calcular a porcentagem de variação das áreas de plantio de arroz para as quatro áreas selecionadas (Tabela 4).

Tabela 4. Áreas de cultivo de arroz irrigado nos três períodos considerados (em ha).

<table>
<thead>
<tr>
<th>Área de estudo</th>
<th>1988</th>
<th>1995</th>
<th>2003</th>
<th>Variação (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guaratinguetá (Piaguí)</td>
<td>2028,42</td>
<td>1997,19</td>
<td>2363,46</td>
<td>14,2</td>
</tr>
<tr>
<td>Lorena/Canas</td>
<td>1194,39</td>
<td>770,31</td>
<td>807,39</td>
<td>-32,4</td>
</tr>
<tr>
<td>Pindamonhangaba</td>
<td>5892,12</td>
<td>4417,47</td>
<td>4554,63</td>
<td>-22,7</td>
</tr>
<tr>
<td>Tremembé</td>
<td>6078,51</td>
<td>5543,28</td>
<td>5689,89</td>
<td>-6,4</td>
</tr>
</tbody>
</table>

A partir da Tabela 4, pode se observar que todas as sub-regiões apresentaram redução nas áreas de cultivo de arroz com exceção da região Guaratinguetá (Piaguí).

A região Lorena/Canas apresentou a redução mais significativa no período entre 1988 e 2003 (32,4%). No período entre 1995 e 2003 essa região teve um pequeno acréscimo da área de plantio. A Figura 2 mostra a redução das áreas de plantio na região Lorena/Canas que
ocorreu principalmente próxima às porções meandradas do rio Paraíba do Sul. De fato, as áreas de irrigação situam-se no eixo de integração urbana entre Lorena (na parte sudoeste da imagem) e Canas (na parte nordeste) conforme se pode observar na figura 2 na comparação entre 1988 e 2003. Além de pressões urbanísticas, uma parte da área de arroz irrigado foi transformada em pastagem. Isso foi observado na visita realizada ao bairro Porto do Meira onde não existem mais as grandes áreas de plantio de arroz identificadas na carta topográfica do IBGE, 1:50.000 de 1967.

(a) (b)

Figura 2. Evolução das áreas de arroz irrigado na região de Lorena e Canas entre 1988 (a) e 2003 (b).

Para a região de Pindamonhangaba, houve redução da área de cultivo de cerca de 25,0% entre 1988 e 1995 e um pequeno aumento da ordem de 3,0% de 1995 e 2003, perfazendo uma redução de 22,7% entre 1988 e 2003 (Figura 3). Entre todas as regiões analisadas, essa foi a que apresentou uma maior fragmentação e perda de continuidade das áreas de plantio.

(a) (b)

Figura 3. Evolução das áreas de arroz irrigado na região de Pindamonhangaba entre 1988 (a) e 2003 (b).

Ainda que não existam estudos específicos, a redução das áreas de irrigação na região de Pindamonhangaba pode estar associada ao grande crescimento urbano e industrial nas últimas décadas (São Paulo, 2000), este último apoiado por ações municipais de incentivos fiscais para instalação de empresas do município. Isso tem gerado grandes valorizações do uso da terra o que inviabiliza economicamente o plantio de arroz.
Com relação à região de Tremembé, pode se observar redução menos significativa, da ordem de 8,8% entre 1988 e 1995 e 2,6% entre 1995 e 2003, perfazendo uma redução de 6,4% entre 1988 e 2003 (Figura 4).

Em Tremembé, as áreas de plantio de arroz têm sido relativamente preservadas do avanço da urbanização e da industrialização. Entretanto, as áreas urbanas de Tremembé e Taubaté constituem hoje uma única “mancha”, sendo possível que as áreas de plantio de arroz sofram pressões do avanço da urbanização nas próximas décadas. Atualmente, o maior problema está relacionado à atividade de mineração, particularmente os portos de areia com exploração de cavas os quais têm avançado sobre as áreas de polder, contribuído para a redução das áreas agrícolas (Lindenberg, 2001).

Ao contrário das demais, a área de Guaratinguetá apresentou crescimento de 14,2% no período entre 1988 e 2003 (Figura 5), ainda que tenha tido redução de 9% no período compreendido entre 1988 e 1995 (Tabela 4).

Na região de Guaratinguetá, a área de irrigação está concentrada na região da Colônia do Piaguí, a qual utiliza a extensa área de várzea do ribeirão homônimo. Na visita ao polder Piaguí foram observados os tabuleiros de arroz e também os canais de condução de água de concreto, além dos silos e secadores de arroz que estão presentes em quase todas as propriedades. A boa estrutura organizacional da colônia contribui para a manutenção e o crescimento da atividade de irrigação, que não cede facilmente às pressões provocadas pelas mudanças de uso da terra como ocorreu em outras regiões do Vale do Paraíba. Apesar desta organização, a análise multitemporal com imagens de satélite e fotografias aéreas mostrou que algumas áreas de plantio de arroz estão sendo substituídas por lotamentos urbanos.
5. CONCLUSÕES

Conforme a tendência mundial, no Estado de São Paulo as áreas de irrigação vêm se expandindo fortemente, crescendo a uma taxa média de 6% ao ano. Entretanto, no caso do Vale do Paraíba, apesar do plantio de arroz ser uma atividade tradicional, essa tendência não vem ocorrendo. Os resultados obtidos mostram significativas reduções das áreas de plantio de arroz que chegam a alcançar 32,4% na região de Lorena e 22,7% na região de Pindamonhangaba e, em menor proporção, na região de Tremembé (6,4%). A área de Guaratinguetá (Colônia do Piaguí) foi a única que apresentou crescimento positivo, em torno de 14,2%. Considerando-se o total das quatro regiões analisadas, observa-se redução de 11,8% na área de plantio no período considerado (1988-2003).

Aspecto positivo na recuperação das áreas agrícolas na várzea é o seu crescimento no período entre 1995 e 2003, observado em todas as áreas estudadas, variando entre 8,4 e 9,7%. Esse aumento foi interpretado como ligeira recuperação das áreas de irrigação em face da grande redução ocorrida entre 1988 e 1995. Entretanto, é possível que essa tendência de crescimento não continue para os próximos anos, devido à expansão urbana vir cada vez mais ocupando os terrenos de baixíssima declividade (<2%).

A rápida mudança na paisagem do Vale do Paraíba demonstra a necessidade de políticas públicas que sejam capazes de reduzir as pressões sobre as áreas de várzeas (naturais e agrícolas). Apesar das restrições físicas e ambientais apresentadas pela várzea do rio Paraíba do Sul, as cidades têm se expandido, substituindo as áreas de plantio de arroz e destruindo o que resta do ecossistema de áreas úmidas.

6. AGRADECIMENTOS

À Fundação de Amparo à Pesquisa do Estado de São Paulo/FAPESP pela bolsa de iniciação científica (Processo 02/13494-7).
7. REFERÊNCIAS

SHIBA, M. H.; SANTOS, R. L.; QUINTANILHA, J. A.; KIM, H. Y. Classificação de imagens de sensoriamento remoto pela aprendizagem por árvores de decisão: uma

